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ABSTRACT 

 

In any microelectronic device, fundamental physical parameters must be well 

understood if electronic properties are to be successfully optimized. One such prominent 

parameter is energetic trap states, which are well-known to plague amorphous or otherwise 

impure semiconducting materials. Organic semiconductors are no strangers to such states and 

their electronic properties are evidently tied to these defects. This dissertation aims to 

elucidate these states in organic photovoltaic (OPV) devices. The literature to date is first 

reviewed and the author’s contributions are subsequently detailed.  

 

Within the community, several techniques have been leveraged to study these mid-gap 

states. Atop the list are optical, capacitance and current based measurements and each has 

provided important pieces to the overall defect profile. Piecing together the works to date, 

organic photovoltaic materials are depicted as disordered semiconductors with a seemingly 

continuous distribution of both energetically shallow and deep trap bands. Upon blending the 

pure materials to create the modern day bulk heterojunction – the currently preferred 

photovoltaic architecture – energetic disorder increases and new trap bands appear. These 

states have been shown to stem from both intrinsic (e.g. structural disorder) and extrinsic (e.g. 

oxygen and synthesis contaminates) sources and it is quite clear that such states can have 

profound effects on, if not completely control, the electronic properties and long term stability 

of OPV devices. Most prominently, these states are known to enhance trap-assisted 

recombination, induce Fermi-level pinning and generate space-charge effects. Though these 
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mid-gap traps have a large negative impact, they also can give an advantageous inherent 

doping, improving conductivity and interfacial electric fields. Evidently, continued progress in 

understanding the nature, sources, affects and possible mitigation of these defects in both 

current and future materials will be crucial to the optimization of this promising technology.  

 

The primary work of this study is to build upon these reports and to further the current 

body of knowledge on the identification and characterization of defect states in OPV devices. 

Capacitance techniques are heavily employed herein. As such, the accurate capacitance 

characterization of OPV devices was first visited. It was found that, owing to thinner films and 

larger series resistance, the series based parasitics could not be neglected in the typical 

frequency range of interest or significant errors and misinterpretations were introduced. Armed 

with this more accurate model, deeper, previously unknown trap states were then identified 

using low frequency capacitance measurements coupled with a point by point differential of 

high frequency capacitance-voltage measurements. The discovered defects remain important 

as it is those states closer to the midgap which more efficiently contribute to recombination 

and can be detrimental to device performance. More generally, the presented technique gives 

a generic overview of the capacitance response of OPV devices – resolving anomalies and 

enabling others to better study the defect profile in their devices. Lastly, the pre-exponential 

factor of trap emission, also known as the attempt-to-escape frequency, was characterized. 

This parameter is essential if trap occupancy kinetics are to be accurately described – important 

for any measurement or model dependent on the detrapping dynamics. It was found that the 

polymer based devices studied herein have a prefactor within a similar range, yielding similar 
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trap capture cross sections. Not only does this give guidance as to the proper value to be used 

in the detrapping measurements/models, but also indicates that the trapping mechanisms in 

these devices are likely similar.        
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1 CHAPTER I: INTRODUCTION 

 

The last decades have witnessed a shift in the world views of the energy sources which 

sustain our industries, homes and transportation. To date, the fossil fuels have been staple 

power generators; however, many have begun to question the impact of burning resources 

such as coal and oil on both human and environmental health. This, coupled with pushes to 

achieve energy independence with long-term sustainable sources, has spurred extensive 

research into alternative energies. The most promising, low-carbon sources include nuclear, 

wind, geothermal and solar – each with distinct advantages. Though a likely solution to the 

energy needs consists of a diverse combination of the above, this review focuses on specifics of 

the latter: solar power. Photovoltaic devices have become popular for many applications owing 

to their relative small scale (e.g. can be incorporated into many products), independence from 

large infrastructure (e.g. suitable for off-grid locations) and decentralization (e.g. the energy 

source does not need to be transported).  

 

Today, the terms ‘solar cell’ and ‘solar panel’ typically refer to commercially available arrays 

based on inorganic materials such as silicon or cadmium telluride. However, within the research 

community, organic materials have emerged as strong candidates for the next generation of 

devices. These materials offer numerous advantages, including thin film thickness, lights 

weights, mechanical flexibilities, a relative ease of processing and a lower environmental 

impact (e.g. low energy payback time and low levels of anthropogenic emissions)1. Most 

notable are the latter two. Low-temperature, solution based fabrication opens the door for 

large scale roll-to-roll production. This has the potential to greatly reduce commercial 
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manufacturing costs, enabling a wider scale of affordability and distribution with less 

environmental impact than the more traditional photovoltaic technologies. Of course, in order 

to become more commercially feasible, organic photovoltaic (OPV) cells must first be efficient, 

stable and reproducible solar converters.  

 

OPV research has been ongoing for many years. Numerous important breakthroughs have 

gated today’s progress and the last decade in particular has seen a rapid improvement in OPV 

performance. The first OPV devices consisted of a single-layer organic semiconductor 

sandwiched between two electrodes. Photons incident on the organic material were absorbed, 

which, owing to a low dielectric constant and small Bohr radius of carriers, generate a bound 

electron-hole pair.2 Within the bulk, the electric field was insufficient for exciton dissociation, 

thus the power conversion efficiency (PCE) was severely limited as most photogenerated 

charges were lost to recombination. In response, Tang demonstrated a bilayer structure 

comprising a planar stack between an organic donor and acceptor.3 This p-n heterojunction-like 

device produced a large dissociation field at the material junction and gave a PCE of nearly 1%.3 

However, with the typical exciton diffusion length (ca. 10 nm) an order of magnitude smaller 

than the thickness required for high optical absorption (ca. 100+ nm), many excitons were 

unable to reach the separation interface and were still lost. Thus, Halls et al. and Yu et al. then 

introduced the bulk heterjunction (BHJ) concept; a blended film comprised of a bulk mixture 

between donor and acceptor materials.4,5 This bulk blend generates dissociation interfaces at a 

phase segregation nearing the exciton diffusion length, while still allowing for sufficient optical 
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thickness. The structure pushed single junction PCEs to several percent, a number which in 

recent days is approaching 10%.6  

 

Though the field has impressively progressed over the last several years, the Schockley-

Queisser PCE limit of a single junction BHJ OPV has been calculated at ca. 23%.7 This highlights 

that extensive bottlenecks still exist. Energy level misalignment, inadequate light trapping, poor 

exciton diffusion, recombination and low carrier mobilities have been cited as the top 

deficiencies limiting device perforamce.7 Through the efforts to alleviate these bottlenecks, 

many of the latest breakthroughs have come from the development of new materials. Each 

with improved bandgaps and tuned energy level offsets to improve absorption, open circuit 

voltage, charge dissociation and the like. However, no matter the material, fundamental 

physical parameters will remain important, and understanding their role in OPV performance is 

crucial in further optimizing this promising technology. One such underlying physical aspect is 

the presence of defects and the mid-gap energy states they create. 
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2 CHAPTER II: BACKGROUND AND LITERATURE SURVEY 

 

In this chapter, a discussion on the background of defect states in organic photovoltaic 

devices is presented. Works to date centered on such defects are detailed and the basic 

concepts of commonplace defect measurements are described. The literature review below 

was published in Energy and Environmental Science in 2013.8 

 

2.1 Defects: Background, definition of terms, etc. 

When speaking of organic semiconductors, the highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO) are commonly referenced. These orbitals are 

often likened to the valence and conduction bands of inorganic materials and, similarly, are 

separated by a bandgap. Within this energy gap, it is well known that both shallow- and deep-

level states can be present (Figure 1), painting a picture of energetic disorder in OPV materials. 

Generally speaking, the origins of these trap states are described by two broad categories: 

extrinsic and intrinsic.9 Extrinsic traps stem from extrinsic defects, such as chemical impurities 

introduced during material synthesis, device fabrication or exposure to oxygen or moisture.9-17 

External bias-stress and an electrochemical process involving oxygen and electrical biasing have 

also been shown to generate metastable mid-gap states – which are extrinsic by nature.18,19 

Extrinsic, chemical defects can be further described as either bound or unbound, differentiating 

impurities that are chemically appended from those that are not.20 Intrinsic traps stem from 

intrinsic defects. These defects arise from the morphological disorder inherent in the 

amorphous nature of a typical organic film.2,21-24 Morphological defects can be described as 
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either noncovalent or covalent.2 The former refers to energetic entities which slightly perturb 

surrounding energy levels, generating states [typically] shallower in the bandgap.25 Owing to 

their weak effects, no covalent bonds are altered. This type of disorder is common in molecular 

organic semiconductors.2 In contrast, the latter refers to defects which cause higher energy 

perturbations, affecting covalent bonds and generating levels [typically] deeper in the gap.26 

This type of disorder is common in π-conjugated organic semiconductors.2,26 Of course, not all 

defects will lead to electroactive mid-gap states. Some may yield energy states within the 

carrier bands themselves,23 and are of less interest to the review at hand. Yet, it is those 

imperfections which produce bandgap residing states, both shallow and deep, that are of great 

importance to OPV device physics and performance.  

 

 

Figure 1: simplified model conceptually illustrating the density of states in an organic material. 

 

E
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It is well known that such defects can have profound effects on physical operation in 

inorganic devices.27-29 Thus, it comes with no surprise that similar effects on OPV performance 

should be expected, significantly contributing to the abovementioned deficiencies. It has even 

been said that defects completely control the electronic properties of amorphous and 

polycrystalline organic materials,26 truly highlighting the need for an in-depth understanding of 

these states. Defects are known to introduce recombination centers, charged point sites or 

both. If present in appreciable concentrations, recombination centers can contribute to free 

carrier loss through trap-assisted recombination, especially if the trap is spatially located at or 

near a donor-acceptor interface.30-32 Charged defects are known to greatly affect the 

electrostatic potential throughout the device,9 which can be detrimental to carrier mobility and 

inhibit transport,20,26 as well as retard the probability of charge separation and promote the 

likelihood bimolecular recombination.33 Further, bulk charges have been linked to the 

quenching of photogenerated excitons, indicating the presence of charged defects may strongly 

limit the diffusion length of this important quasiparticle.20,26 Energetic trap sites can also pin the 

Fermi-level deep within the bandgap, greatly suppressing the built-in field.34 In a solar cell 

device, each of these can yield losses in short circuit current density (Jsc), open circuit voltage 

(Voc) and/or fill factor (FF); hindering the overall PCE. Further, the enhancement of inherent 

traps or the creation of new bands during device operation (e.g. through light or oxygen 

exposure), largely affects OPV stability and may greatly contribute to the long-term degradation 

of these devices.35,36 On the other hand, some aspects of these unintentional defects states 

may be beneficial to OPV performance.  
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As such, this has inspired Wang et al. to ask “Do the defects make it work?”.25 The 

typical organic semiconductor employed in OPV devices has a bandgap nearing 2 eV. This 

strongly limits the intrinsic carrier concentration to 1x103 – 1x107 cm-3.2,26  However, the actual 

carrier density can be substantially higher. For example, common π-conjugated polymers have 

a concentration reaching 1x1015 – 1x1019 cm-3, some 8 to 16 orders of magnitude higher than 

the estimated intrinsic density.25,37-40 These extra carriers originate from both structural and 

extrinsic defects which produce electronic states near a band edge.2 Oxygen and moisture, in 

particular, have been identified as sources of p-type doping, especially if the exposure is in the 

presence of light.10,11,14,41-47 Controlled doping has proven to be an important parameter for 

inorganic devices and, albeit typically unintentional, these defects may be just as advantageous 

for OPVs. Most notably, these excess concentrations may vastly alter carrier conductivity as 

well as the electric field at the donor-acceptor interface,2,10,25,26,48-50 improving charge transport 

and exciton dissociation while lowering recombination probability at the interface. Of course, 

as the dopant carrier moves into the more delocalized states, it leaves behind a localized site of 

opposite charge, unavoidably generating a coulomb trap. As stated above, such charged states 

can have profound effects on electrical properties, and thereby, a tradeoff is formed.10,49     

 

Nonetheless, good or bad, defect states in plastic solar cells must be well understood. 

Thus, their identification, characterization and potential mitigation or enhancement remain 

important areas of research. The first, identification, represents the need to profile the 

complete trap density of states (tDOS) throughout the bandgap of OPV materials. As is typical in 

amorphous thin-films, multiple trap bands may exist – highlighting the importance of rigorous 
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profiling techniques to ensure all prominent bands are well known. The second, 

characterization, is the determination of the physical characteristics of these trap bands and 

their affect(s), whether it be positive or negative, on solar cell performance. Among many 

characteristics, one might be interested in the energetic location, concentration, disorder 

spreading, spatial location, type of carrier (majority or minority) trapped and capture/emission 

coefficients. The last, mitigation or enhancement, refers to an end goal of reducing defects 

states that negatively influence OPV performance while augmenting states that have a positive 

effect. Though it will be impossible to completely rid OPV materials of detrimental defects, 

reducing trap states by even an order of magnitude31 and gaining better control of the impurity 

based doping will be highly beneficial to performance.    

  

As a step towards realizing this goal, this chapter presents a review of select studies 

centered on defects in OPV devices. Our intention is to highlight the progression of trap band 

identification, characterization and mitigation to date and give a general view of its current 

state. Trap profiling in neat materials will first be examined, followed by that in blended 

systems. Trap effects on OPV performance as well as thoughts on trap origins can found 

throughout. In an effort to give a general understanding as to the employed measurements, 

their introductory concepts, equations and relevant citations are also provided.  

 

A note on nomenclature: relatively shallow impurities are routinely introduced into 

inorganic materials to manipulate free-carrier concentrations. In such a case, these states are 

referred to as donors (i.e. readily donate an electron to the conduction band to dope n-type) or 
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acceptors (i.e. readily accept an electron from the valence band to dope p-type).51 Herein, this 

nomenclature is adopted to describe the extrinsic behavior of OPV materials. NA will refer to 

those relatively shallow levels, which give an apparent p-doping. Similarly, relatively deep 

impurities can be considered either donor-like (trap-neutral when electron filled and positively 

charged when empty) or acceptor-like (trap-neutral when hole filled and negatively charged 

when empty).51 Herein, this nomenclature is adopted and such deep trap levels are marked NT.  

  

2.2 Identification and characterization: neat material systems 

2.2.1 General Depiction 

As a starting point, let us look at photothermal deflection spectra (PDS) from Goris et al. to 

understand wavelength dependent absorption, and thereby, the general depiction of the 

midgap tDOS in common OPV materials.52 The spectra of neat poly(3-hexylthiophene) (P3HT), 

neat poly(p-phenylene vinylene (PPV), neat [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) 

and blends thereof are shown in Figure 2. For the time being, I will concentrate on the neat 

materials, but later revisit the blend spectra. The three materials listed are extensively studied 

model OPV systems and will be heavily concentrated on in this article. The PDS spectra shown 

in Figure 2 establish the generally accepted picture of the molecular orbitals and energetic DOS. 

Weak absorption at lower energies, a rapid increase at moderate energies and relatively strong 

absorption at higher energies is seen. This is in accordance with molecular orbitals that are 

Gaussian in nature, broadening of which introduces a distribution of shallow defects that trail 

into more localized states deeper in the gap. Turning to other works, some substantiation of 

this picture can be found. 
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Figure 2: (a) PDS-spectrum of dropcast layers of MDMO-PPV (square), PCBM (star) and MDMO-

PPV:PCBM (80 wt%) (pentagon). (b) PDS-spectra of dropcast layers of P3HT (square), PCBM 

(star) and P3HT:PCBM (66.66 wt%) (pentagon). The full symbols (PCBM=star) correspond to 

data obtained with transmittance and reflectance measurements. Reprinted with permission 

from [52]. Copyright [2006], American Institute of Physics.   

  

In acceptor materials, this general depiction is readily substantiated by earlier optical 

experiments on C60 and C70 fullerites.53,54 Again, distinct absorption in the sub-gap regime was 

observed and identified as an Urbach tail (shallow states) leading into localized electronic levels 

(deeper states). In donor materials, a more thorough substantiating view can be offered 

through thermally stimulated current (TSC) measurements (refer to section 2.5.1 for details).55 

In the cited work, an indium tin oxide (ITO)/P3HT/Aluminum (Al) structure was studied.55 As 

shown in Figure 3, the resulting TSC profile identifies two prominent peaks in the energetic 
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tDOS. The first, low temperature peak (93 K) represents relatively shallow levels, likely tail 

states extending from the Gaussian orbital. The second, high temperature peak (200 K) 

represents deeper states, likely more localized trap levels. This illustrates a tDOS much like that 

of Figure 1 and is in support of the PDS data.  

 

 

Figure 3: TSC signal from a thin film of P3HT sandwiched between an ITO and aluminum 

electrode for the case of temperature of trap filling 77 K (solid line) and 4 K (dashed line). Inset 

shows the energy dependencies of the DOS. Reprinted with permission from [55]. Copyright 

[2003], American Institute of Physics.  

 

Clearly, the general depiction shows a distribution of bangap residing states in both pure 

donor and pure acceptor materials. In the subsequent subsections, I will further detail and 

quantify these shallow and deep trap states and highlight their origins.  
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2.2.2 Levels in donor materials 

2.2.2.1 Relatively shallow activation energies 

To begin the more detailed discussion, I focus first on shallow traps in neat donor 

materials. The low temperature TSC peak above was confirmed and further resolved in 2008.56 

Here, ITO / poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) / P3HT / Al 

devices were studied.56 A low temperature peak around 85 K (105 meV) with a shoulder around 

50 K (50 meV) was found (Figure 4a, black line). The 85 K peak is in good agreement with the 

prior TSC work (93 K), however, the aforementioned 200 K peak was not reproduced.56 A 

similar finding was also noted through drive-level transient spectroscopy (DLTS; refer to section 

2.5.6 for details), where a single trap level with an activation energy of ca. 87 meV was revealed 

but, again, no deeper band was seen.57 Interestingly, Schafferhan’s shallower ‘shoulder band’ 

was also not noted in the DLTS work. In any case, Schafferhans et al. estimate the total trap 

density in the studied energy regime to be ca. 1.0x1016 cm-3.56 To further quantify and construct 

a resolved profile of the tDOS (Figure 4b), the authors then applied the so-called fractional 

Tstart-Tstop TSC technique (Figure 4a, colored lines; refer to section 2.5.2 for details). Clearly seen 

in the resolved factional data is the overlap of two Gaussian-like distributions, indicating two 

prominent bands in a continuous distribution of relatively shallow trap states. 
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Figure 4: (a) main runs of the different Tstart - Tstop cycles, as well as the conventional TSC 

spectrum (black curve), revealing two trap states T1 and T2 and (b) the resulting DOOS 

distribution. Reprinted with full permission from [56]. Copyright [2008], American Institute of 

Physics. 

 

Shallow activation levels in unblended donors have also been directly observed through 

capacitance versus voltage (CV) measurements (refer to section 2.5.4 for details).14 It should be 

noted that the CV measurement is sensitive only to mobile charges. Herein, complete ionization 

is not assumed and this CV measured quantity is referred to as the ‘ionized acceptor density’ 

(NA
-). This value should be considered, at the least, a lower limit of the total shallow impurity 

concentration. As mentioned above, defects tend to give OPV materials an apparent p-type 

doping. With moderate dopings, Fermi-levels are in the range of a few hundred meV above the 



www.manaraa.com

14 
 

HOMO. This, coupled with cathode work functions that are several hundred meV lower, 

promotes the formation of a Schottky barrier at the organic-cathode junction.58 The existence 

of such an interface in neat P3HT diodes was evidently shown by Dennler et al., and thereby, 

the authors demonstrated the ability to leverage depletion capacitance techniques on these 

systems to study bandgap residing states. In Dennler’s work, the charge carrier density as per 

air exposure was monitored through CV measurements (Figure 5).14 The group found the 

ionized acceptor density evolved from 5.0x1016 to 1.0x1017 cm-3 throughout the exposure 

experiment.14 The as-cast density is in the same range as that predicted by the TSC 

measurements,56 again showing a strong presence of shallow levels. The evolution of the 

concentration through air exposure supports the claim that oxygen and moisture give rise to a 

p-type doping and will be revisited later. 
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Figure 5: (a) capacitance C and (b) 1/C2 of an ITO/P3HT/Al diode recorded at 1 kHz every 2 min 

in air versus the applied voltage V. The arrows indicate increasing time. The solid line in (b) is a 

linear fit of one intermediate curve. Reprinted with full permission from [14]. Copyright [2005], 

American Institute Physics.  

 

Other CV works can be explored for comparison. One such work was recently provided 

by Li. et al.59 The group studied CV characteristics at various frequencies on a 

ITO/PEDOT:PSS/P3HT/Al structure. An ionized impurity concentrations in the range of 6 to 

10x1014 cm-3 was found,59 significantly lower than that of Dennler et al.14 Though the exact 

reason for this large difference is unknown, I suspect several likely contributors. Simply, 

variations in air exposure could cause this noted difference. However, one must also remember 
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structural imperfections as well as other chemical impurities can contribute to the shallow level 

concencetration.2 When comparing the fabrication of each group’s devices, a film thickness of 

ca. 1 µm for Dennler and ca. 5 µm for Li is found.14,59 Thicker films dry more slowly and slower 

drying is known to reduce structural disorder.60 Thereby the apparent p-type doping may be 

reduced. This gives a good introduction to the effects that simple processing parameters can 

have on energetic defect states. 

 

 

Figure 6: inverse capacitance squared, 1/C2, against applied bias, Vappl, of an ITO/PPV/Al device. 

Reprinted from publication [61], Copyright [2000], with permission from Elsevier. 

  

CV measurements have also been used to identify shallow states in PPV based diodes 

(Figure 6) – an ITO/PPV/Al structure was studied.61 The measurements were taken between -5 

and 3 VDC; the employed frequency is not known.61 A quantification for NA
- was not given, but 

can be estimated in the range of 5x1016 cm-3 if a nominal device area is assumed. This is in line 

with typically reported values.  
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Clearly, shallow states in neat donors are present. Fractional TSC measurements show 

these states to be distributed in energy, while CV indicates these states [at least partially] 

ionized to give rise to an appreciable amount of mobile charges. Moving forward, I wish to 

elucidate the states deeper in energy. Such states are subtly seen in Figure 6.   

 

Upon further examination of Figure 6, one notes a break in the Mott-Schottky (MS) slope 

at ca. -0.75 VDC.  In fact, Dennler et al. as well as Li et al. also observed this dual slope. In the 

former (Figure 5), the authors imputed the break to an inhomogeneous doping profile induced 

by the fabrication process.14 This is a reasonable attitude considering a spatial change (increase) 

in NA
- would induce such a slope change. Li et al., however, have indicated this may be the 

result of a non-uniform spatial doping or may represent the presence of energetically deep trap 

band(s).59 The latter highlights a second, important interpretation, which has a basis in deep-

trap-rich materials.62 The formalization of such an interpretation was given by Kimerling and is 

summarized in section 2.5.4.63 Campbell et al. have taken this interpretation and asserted the 

break stems from deep trap contributions. This gives the indication that levels with a relatively 

deeper activation energy are present, which, because of the prominent decrease in the MS 

slope, are acceptor-like such that NT > NA
-.61 This interpretation is in line with the general 

‘shallow + deep trap’ depiction of section 2.2.1, giving some corroboration to the authors’ 

theory. The next section aims to focus on these deep states in donor materials.  
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2.2.2.2 Relatively deep activation energies 

The presence of these deeper trap levels was further substantiated and quantified by 

DLTS measurements in the same work.61  Campbell et al.’s measurement showed the presence 

of deep, p-type majority bulk-traps that are distributed in energy.61 Through temperature 

dependent measurements and extensive model fitting, the authors deduced a discrete trap 

level with an activation energy of ca. 750 meV above the HOMO and a concentration of ca. 

5x1017 cm-3. This readily supports the notion from the CV data that a large concentration of 

states is present deeper in the mid-gap of pure PPV films.  

 

 

Figure 7: occupied (left) and unoccupied (right) molecular orbital contributions of regioregular 

P3HT to the (a) photoemission and inverse photoemission spectra, respectively, are compared 

with (b) theory. The experimental HOMO-LUMO gap of P3HT (7.3 eV) is indicated as is a defect 

state (def.) not directly attributable to the molecular orbitals indicated (see text). The inset 
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shows a schematic of a single chain of regioregular P3HT. Reprinted with full permission from 

[64]. Copyright [2007], John Wiley and Sons. 

 

Indeed, a similar deep defect band in pure P3HT was predicted, not only by the TSC 

measurements above (Figure 3), but also by ultraviolet and inverse photoemission 

spectroscopy.64 The photoemission spectra of  Figure 7 show a weak feature (labeled ‘def’) that 

cannot be associated with either molecular orbital.64 This distribution occurs within the 

polymer bandgap and likely represents deep states. To gain further insights and quantification 

of the suspected band, I turn to capacitance versus frequency (CF) measurements (refer to 

section 2.5.5 for details).38 Such measurements have directly revealed a Gaussian shaped deep 

trap band in neat P3HT diodes with ET=390 meV above the HOMO, σT=56 meV and NT=2.1x1016 

cm-3.38 One notes these parameters are somewhat different than those derived for PPV diodes 

but, nonetheless, illustrate a similar qualitative depiction. CV measurements included with the 

cited CF experiment yield an ionized acceptor density of 3.2x1016 cm-3,38 in line with that of 

Dennler’s CV measured 5x1016 cm-3 for neat P3HT diodes.14 Interestingly, if one considers the 

lower measurement frequency employed in Dennler’s CV work (1 kHz) as well as the CF theory 

outlined in section 2.5.5, the known deep trap may be fully responding throughout the CV 

measurement. If the deep-band concentration (2.1x1016 cm-3)38 is subtracted from the 

measured NA
-
 (5x1016 cm-3),14 a real ionized acceptor concentration of 2.9x1016 cm-3

 is revealed. 

This is in excellent agreement with the aforementioned 3.2x1016 cm-3 and gives nice 

substantiation of the applied theory. Moreover, this highlights that NT ≈ NA
-, indicating a 
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substantial impact of NT on the electronic properties, and thereby, photovoltaic performance 

should be expected.  

 

As such, modeling techniques employing similar trap distributions should properly 

describe the current characteristics of these OPV systems. In general, charge transport in a 

typical organic material is described by a hopping behavior. These current characteristics are 

usually explained with space-charge limited (SCL) and trap limited (TL) models. From this 

modeling, features of the dominate trap sites and their effects on charge transport can be 

readily studied (refer to section 2.5.3 for details). Nikitenko et al. have done just that with neat 

P3HT diodes.55 In accordance with their TSC data (Figure 3), a multiple trap formalism was 

employed with the assumption that a superposition of two Gaussian distributions makes up the 

energetic DOS.55  

 

 

       
 

 
 
      

 
     

  

   
 

  
  

     

      
      

 

   
   

(1) 

 

Numerical calculations coupled with this dual Gaussian were presented to study the 

model’s general behavior. As expected, the simulations showed high voltages or a zero trap 

concentration induced currents close to the trap-free law (Equation (13) with ⍬=1), while 

variations of the NT, ET and σT  parameters showed slope changes and voltages shifts in the 
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current characteristics at intermittent biases.55 Confident in its validity, the model was then 

applied to P3HT diode currents.55 The experimental data was well explained by the defined 

model and the parameters summarized in Table 1.55 As seen, this data supports the depicted 

shallow-deep tDOS and further quantifies their deep-trap band concentration at 1.5x1016 cm-3. 

The trap density (NT) as well as spreading parameter (σT) are in good agreement with the CF 

based work – though, the activation energy is somewhat higher. Nonetheless, this highlights 

these trap states have a controlling effect on charge transport.  

 

 E (meV) N (cm-3) σ (meV) 

Shallow band - 1.0x1018 55 

Deep band 500 1.5x1016 80 

Table 1: summary of important fitting parameters in Nikitenko et al.’s dual Gaussian SCL 

current work. 

 

Evidently, deeper distributions are present in neat donor materials. In both P3HT and PPV 

these deep traps have been identified and characterized. In P3HT a Gaussian distribution has 

been indicated, while in PPV a dominant discrete level. In both, a relatively high density of traps 

has been reported – ≥1x1016 cm-3 – which is of the same order and, in some cases, even greater 

than the density of relatively shallow states. Of course, thus far I have focused only on trap 

levels between the HOMO and mid-gap of these neat materials, however, traps in the upper 

half of the gap must also be considered. 
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2.2.3 Electron traps 

The discussion on electron traps in donor materials is relatively straight forward as a 

recent work by Nicolai et al. unifies the presence of these deep states in popular OPV 

materials.65 The authors leveraged a numerical drift-diffusion model coupled with a Gaussian 

distribution of states to study the current characteristics of electron-only organic diodes. 

Remarkably, the electron trap band was found to be fairly consistent with ET ≈ -3.6 eV below 

the vacuum level, NT ≈ 3x1017 cm-3
 and σT ≈ 100 meV for all tested materials.65 In P3HT, for 

example, this corresponds to a trap depth of ca. 600 meV below the LUMO. One also notes the 

relatively high density of defects states. Thereby, piecing together the works discussed insofar 

to depict the complete trap profile between donor HOMO and LUMO, the cartoon of Figure 1 is 

readily obtained – that is, Gaussian shaped molecular orbitals that decay into distributions of 

energetically shallow and deep trap states.  

 

Interestingly, Nicolai et al.’s work implies that materials with an electron affinity 

approaching or larger than ca. -3.6 eV should exhibit trap-free electronic properties. Indeed, 

this was found true for both PC60BM (LUMO ≈ -3.9 eV) and poly[{N,N’-bis(2-octyldodecyl)-

naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl}-alt-5,5’-(2,2’-bithiophene)] (P(NDI2OD-T2); 

LUMO ≈ -4.0 eV), both of which gave trap-free SCL electron transport.65 Of particular interest is 

the former, which is a commonly used acceptor in today’s OPV cells. Having established a more 

detailed view of the electronic traps in neat donor materials, I now turn my attention to the 

other half of the BHJ blend: acceptor materials.  
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2.2.4 Levels in acceptor materials 

As discussed above, most modern day OPV devices comprise both donor and acceptor 

materials. Neat donors have been discussed thus far; let us now visit the latter. 

Methanofullerenes are commonly employed acceptors and may contain bandgap residing trap 

states. Though PC60BM was shown to exhibit trap-free electron transport,65 others have 

indicated electron trapping in acceptor materials, especially the higher adduct fullerenes.66 As 

an example of directly identifying such states, I highlight a work in which the conventional and 

Tstart-Tstop TSC measurements were again applied.67 Bis[6,6]-phenyl-C61-butyric acid methyl 

ester (bisPC61BM), [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), and PC61BM based 

devices (ITO/PEDOT:PSS/PCBM/ Lithium Fluoride (LiF) /Al) were studied. Figure 8 shows the 

resulting [conventional TSC] spectra, whose quantification is summarized by Table 2.67 

 

 

Figure 8: TSC spectra of PC61BM, bisPC61BM and PC71BM. Reprinted with full permission from 

[67]. Copyright [2011], John Wiley and Sons. 
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Sample Trap Density (m-3) Tmax (K) Et (meV) 

PC61BM ≥ 1.7x1022 54.9 86 

bisPC61BM 
≥ 2.3x1022 32.4 45 

 103 184 

PC71BM 
≥ 2.0x1022 60.1 96 

 121.4 223 

 

Table 2: lower limit of the trap densities of PC61BM, bisPC61BM and PC71BM, as well as the 

temperatures of the TSC maxima and the corresponding activation energies estimated by the 

Tmax method according to Equation (4). For bisPC61BM and PC71BM Et and Tmax values of both 

peaks are shown. Reprinted with full permission from [67]. Copyright [2011], John Wiley and 

Sons. 

 

Interestingly, all three materials showed at least one distinct trap distribution, with 

bisPC61BM and PC71BM showing the presence of a second, deeper level. Each methanofullerene 

exhibited a markedly different TSC spectrum. A common feature was noted between PC61BM 

and bisPC61BM, where a low temperature peak in bisPC61BM (ca. 32 K or 45 meV) closely 

matched a slight PC61BM TSC shoulder (Figure 8) – signifying a common defect level.67 To give 

some substantiation, DLTS measurements on neat PC61BM films 

(ITO/PEDOT:PSS/PC61BM/LiF/Al) also showed a single shallow trap band in this range, however, 

with a somewhat lower activation energy (21 meV).57 At first sight this shallow PC61BM level 

seems to be in contrast to the trap-free electron transport discussed earlier.65 However, this 

can be reconciled by considering the trap band magnitude. It is well know that for a Gaussian 

distribution of shallow traps, the space charge limited current is approximated by a modified 
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Mott-Gurney law (see Equation (13)). A quadratic current-voltage relationship coupled with a 

reduced [effective] mobility is then exhibited. The effective mobility is given by µp⍬ and,  

 

⍬  
    

         
 (2) 

 

where  nc  is the average free carrier concentration throughout the thickness and  nt  the 

average trapped charge. As previously stated, the trap-free case has ⍬=1. The free carrier 

concentration in PC61BM  is in the range of 1x1018 cm-3 and, for a conservative estimate, 

consider the trapped charge to be in the range 1-2x1016 cm-3. This gives a ⍬ approaching 1 and 

indicates trap-free electron transport should be expected. Nonetheless, the TSC of all three 

materials indicated a continuous distribution of trap states throughout the measured energy 

regime. This point is confirmed by fractional TSC measurements on PC61BM, which further 

quantified the tDOS.67 When comparing these three commonly employed materials, both 

bisPC61BM and PC71BM showed further broadening in the TSC signal and slightly higher trap 

concentrations with significantly deeper energies.67 This indicates a higher amount of energetic 

disorder and electron trapping in these two derivatives and explains lowered dark currents 

through these materials.67  

 

This TSC work supports the general depiction of the neat acceptor tDOS (section 2.2.1) and 

further quantifies the states present in common acceptors. Clearly, the pure acceptor materials 

of OPV devices are subject to energetic disorder and bandgap residing trap levels. The impact of 
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these states on photovoltaic performance will be discussed later. Next, trap origins in these 

neat materials are visited.  

 

2.2.5 Trap origins: Oxygen, structural and synthesis residuals 

To give some idea as to the sources of the trap levels discussed above, this section 

explores studies centered on defect level origins in neat OPV materials. Both extrinsic and 

intrinsic sources are considered, namely: oxygen/moisture, structural disorder and synthesis 

residuals.  

 

As mentioned throughout the chapter and hinted at by the aforementioned CV work,14 

oxygen and moisture have been identified as key sources of p-type doping in donor materials. 

This indicates these extrinsic impurities generate or alter bandgap residing levels of interest. To 

begin this discussion, I return to the P3HT TSC work presented by Schafferhans et al. (Figure 4). 

56 In the report, the conventional TSC measurement was repeated as a function of both air and 

pure oxygen exposure. After 96 hrs of O2 treatment, the magnitude of the 105 meV band nearly 

tripled, while the 50 meV remained unchanged.56 Similar effects were noted for air exposure. 

This shows that the shallower, 50 meV band is likely intrinsic (structural) in nature. Though, 

other chemical impurities cannot yet be ruled out. More notably, this shows the dominate 105 

meV band is likely extrinsic in nature and heavily related to oxygen. Interestingly, photo-charge 

extraction by linearly increasing voltage (photo-CELIV) measurements show that after 100 hrs 

of air exposure, the mobility dropped by nearly 50x. Clearly, oxygen plays a role in generating 
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or, at the least, altering some portion of the shallow trap distribution in neat P3HT, and 

thereby, the electronic properties.  

  

 

 

Figure 9: UV-vis absorption spectra of a P3HT thin film (20 µm) in contact with oxygen (10 atm) 

and under oxygen-free N2. Reference, O2-free film. Reprinted with permission from [10]. 

Copyright [1997], American Chemical Society. 

 

An earlier work on the interaction of oxygen with poly(3-alkylthiophenes) helps to 

further explain this oxygen related defect and the noted effects on carrier mobility.10 Abdou et 

al. theorized a charge transfer complex (CTC) would form between oxygen and the polymer, 

with a lowest binding energy on the order of ca. 1.9 eV.10 Further, it was thought that this CTC 

state might facilitate charge transfer and the formation of excess charge carriers, thereby 

affecting electronic properties. To detect this possible band, the group studied UV-vis 

absorption of P3HT films in the presence of oxygen and nitrogen (Figure 9). As can be seen, 

nitrogen had essentially no effect on the measured optical density. In contrast, oxygen induced 



www.manaraa.com

28 
 

significant changes, especially near ca. 630 nm or 1.97 eV – strongly implicating the predicted 

CTC.10 This complex formation is supported by the later work of Aguirre et al., who have also 

extended this concept to another polymer.47 Though the most substantial change in optical 

density occurred near 630 nm, it is clearly seen that oxygen induces changes throughout the 

sub-gap energies (Figure 9). This introduces the idea that oxygen in itself affects and/or 

generates a continuous distribution of levels throughout the bandgap. Such a thought is also 

supported by a recent UV-vis study on P3HT in solution form (Figure 10).68 Here, a broad sub-

gap absorption band about ca. 810 nm was induced by oxidant treatments of molecular oxygen 

(O2) as well as Nitrosonium tetrafluoroborate (NOBF4). Interestingly, the absorbance for 

wavelengths between ca. 300 and 550nm was noticeably reduced. A similar decrease at 

moderate wavelengths coupled with an increase at longer wavelengths was also noted for 

treated polymer films, though not nearly as pronouced.
68 Intuitively, one might expect the 

noted changes to have effects on the electronic properties of these films.   
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Figure 10: comparison of UV-vis spectra of P3HT in o-dichlorobenzene solution with the spectra 

of the P3HT solution after exposure to molecular oxygen (P3HT+-O2
-) and NOBF4 (P3HT-BF4

-). 

Reprinted from publication [68], Copyright [2012], with permission from Elsevier. 

 

To detect such changes, Abdou et al. measured the effects of oxygen pressure on both 

the conductivity and mobility of P3HT based field-effect transistors. In the presence of 

increasing oxygen pressure, conductivity was found to increase, while mobility was found to 

decrease.10 An analogous case is well known for inorganic semiconductors with increasing 

doping concentrations.51 This strongly indicates oxygen facilitates the presence of extra carriers 

and helps explain the degraded mobility noted by Schafferhans et al. during the exposure 

experiments.56 The presence of these oxygen induce charge carriers has been more directly 

observed in the afore-discussed work of Dennler et al. (Figure 5).14 As mentioned, through 

successive CV measurements in open air, the group found the ionized acceptor density 

increased by a half order of magnitude (5.0x1016 to 1.0x1017 cm-3).14 This gives a quantification 
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to Abdou et al.’s carrier concentration increase and further highlights the strong effect of 

oxygen/moisture on the shallow impurity states.  

 

In like fashion, the electron traps noted by Nicolai et al. were also imputed [at least in 

part] to oxygen. As discussed, the electron-trap parameters between numerous materials were 

found to be similar. This indicates a common origin and rules out structural disorder. Through 

quantum-chemical calculations, the authors track down this origin and suspect hydrated 

oxygen complexes as the likely culprit.65 Evidently, oxygen and moisture play a dominate role in 

the complete bandgap tDOS of acceptor materials. 

 

Like donor materials, air and oxygen exposure have also been shown to have significant 

effects on the energetic tDOS of C60 and C70 films. In the case of C60, exposure was found to 

greatly enhance the PDS spectrum of the deeper, localized states, while leaving the shallow-tail 

largely unaltered.53 TSC experiments on C60 based transistors adds to this, pin-pointing a trap 

band center on ca. 230 meV that was greatly affected by exposure and an even deeper band 

centered on ca. 370 to 420 meV which remained unchanged.16 This again depicts a defect 

distribution in which some bands are dominated by structural disorder, while others are heavily 

influenced by oxygen and/or moisture. Of course, other extrinsic chemical impurities from 

material synthesis or device fabrication may contribute to the overall tDOS and are incidentally 

lumped in with the structural disorder here. As is the case with the donor materials, these 

oxygen induced modifications in C60 are also accompanied by a significant decrease in carrier 

mobility.16,69,70 Contrarily, in the case of C70, the sub-gap absorption coefficient was actually 
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found to decrease with oxygen exposure, hinting that O2 may be beneficial in terminating some 

inherent defects.54 Interestingly, oxidant treatments (O2 and NOBF4) of PCBM in solution form 

did not produce any changes in the optical density.68  

 

Defect origins from residuals left during material synthesis must also be considered. 

Though reports linking the contaminant impurities to specific trap-band energies could not be 

found, it is well-known that these synthesis residuals produce electronic-property altering 

states. Mentions to contaminates from starting reagents, nickel, copper and rhodium catalysts, 

etc. can be found.71,72 However, maybe most prominent in the literature is residual palladium. A 

majority of conjugated polymers are synthesized via Stille or Suzuki coupling reactions – which 

are catalyzed by palladium complexes.72,73 Residuals of this transition metal have been reported 

and linked to a degradation of electronic properties and photovoltaic performance.71-74 In the 

case of PPV, residual palladium nanoparticles were found to induce shorts, greatly lowering the 

resistance of the film.71 Even very small, hard to detect amounts (e.g. <0.1% by weight) of 

contaminate can have an effect on material properties and OPV performance.71-73 The effects of 

residual catalysts on OPV performance will be subsequently discussed. 

 

Nonetheless, it is evident that commonly used, pure donor and acceptor OPV materials are 

trap-rich semiconductors with electronic properties closely tied to their intrinsic and extrinsic 

induced defects. A depiction of energetic disorder with multiple defect levels both shallow and 

deep has been given and elucidations as to the origins of these traps has been presented. I now 

move to a discussion on how this defect profile changes in the popular BHJ OPV structure; 
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comprising bulk blends of the donor and acceptor materials discussed above. The sources of 

these defects will be revisited and the effects of these defects of BHJ photovoltaic conversion 

will be examined.   

 

2.3 Identification and characterization: blended material systems 

2.3.1 General depiction 

Having examined neat films, it is a logical step to now look at the tDOS of the blended 

systems which make up modern day OPVs. First, the PDS data of Goris et al. should be 

revisted.52 As seen in Figure 2, when compared to neat materials, the spectra of blended 

devices showed a more intricate distribution which extended deeper into the gap.52 This 

strongly indicates a higher degree of disorder in both PPV:PCBM and P3HT:PCBM BHJ devices. 

This story of stronger disorder was recently corroborated and further resolved by Neugebauer 

et al., who have leveraged DLTS  measurements to compare the trap bands of neat P3HT and 

PCBM to that of blended films.57 The activation energies and relative trap concentrations are 

shown in Figure 11. As can be seen, a comparison to TSC measurements on neat P3HT,56 neat 

PCBM67 and a blend thereof36 has also been included. One recalls that the neat-film DLTS data 

has been already mentioned and both materials showed a single, dominate trap level with an 

activation energy of 21 meV for PCBM and 87 meV for P3HT.57 The DLTS of blended films, 

however, presented with numerous emission spectra, indicating multiple trap-levels 

throughout the tDOS. At the low end of the energy spectrum, a trap ‘A’ with an activation near 

28 meV was found. This corresponds reasonably well to the DLTS measured trap in neat PC60BM 

(21 meV), indicating its contribution to blend tDOS.57 The most concentrated band ‘E’ has an 
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activation energy of ca. 100 meV and correlates well the TSC (105 meV) measured neat P3HT 

trap,56,57 potentially indicating the polymer’s contribution. The other bands, ‘B-D’ and ‘F’, are 

unique to the blended system. This readily supports the general depiction of greater energetic 

disorder upon mixing the neat materials and highlights the presence of more charge traps in 

these BHJ devices. Let us now further detail and quantify this added disorder. 

 

 

Figure 11: bars: overview of the obtained activation energies in PCBM (light grey), P3HT (dark 

grey) and P3HT:PCBM blend (black) and relative maximum NT in the spectrum found by I-DLTS. 

Lines: normalize activation energy spectra of earlier TSC measurements [36,56,67] (colors are 

as above). Reprinted with permission from [57]. Copyright [2012], American Institute of Physics.  

 

2.3.2 Levels in the donor and acceptor portions and blend unique bands 

As referenced in Figure 11, trap bands in blended devices have also been examined 

through TSC measurements.36 An ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al structure was studied. 

Three TSC bands were found. Two (50 and 105 meV) precisely matched the bands of their 
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earlier neat P3HT TSC work,56 while the third, which was centered deeper in the gap at 250 

meV, was unique to the blend.36 When comparing the TSC spectrum in blended devices to that 

of the neat films, a substantial broadening and increase in concentration was also seen.36,56 

This, coupled with the existence of the unique, deeper band in the BHJ devices, again shows 

higher energetic disorder in blended systems. It is immediately clear that the dominate band 

centered at ca. 100 meV is common between the DLTS and TSC blended film work.36,57 

Interestingly, the TSC 50 meV band, which the authors attributed to a polymer contribution, 

correlates well with DLTS bands ‘C’ and ‘D’, which were considered unique to the blend in the 

DLTS experiment.36,57 Neglecting the disagreement in origin, DLTS bands ‘C-D’ seem to give 

more resolution to the TSC 50 meV, indicating two, closely spaced and overlapping trap sites 

make up this energy regime. The TSC 250 meV is in qualitative agreement with the DLTS ‘F’ 

band (i.e. both unique and somewhat deeper levels), albeit with a ca. 90 meV larger activation 

energy. The total trap density in the measured regime was estimated at 8x1016 cm-3 – 8x higher 

than that measured for neat P3HT, 4x higher than that of neat PC60BM and nearly 3x higher 

than their simple addition (P3HT+PC60BM).36,56,67     

 

In 2012, Yu et al. also weighed in on the trap distribution of P3HT:PCBM blended films.75 

The authors studied both conventional and Tstart-Tstop TSC measurements on ITO/P3HT:PCBM/Al 

structured cells.75 Conventional TSC revealed two trap bands, centered on 140 and 220 meV, 

not unlike the DLTS (160 meV) and TSC (250 meV) bands, respectively.36,57,75 The group 

hypothesized more bands existed in this energy range, but were unresolved by the 

conventional TSC measurement. Thus, they turned to fractional TSC along with an extensive 
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numerical fitting to further resolve a complete picture of the tDOS. In all, five levels were cited 

(Table 3). As noted, both exponential and Gaussian distributions were seen with concentrations 

ranging between 8.0x1016 and 1.5x1019 cm-3, significantly larger than that found in 

Schafferhans’s bands. Again, two bands (N3 and N4) are in qualitative agreement with the DLTS 

‘F’ (160 meV) trap and TSC 250 meV levels, respectively. Interestingly, the newly resolved N2 is 

somewhat similar to the dominate ‘E’ band of Figure 11, while N1 can be likened to the ‘C-D’ 

distribution. The authors theorized that traps N1-N3 stemmed from properties of the neat P3HT, 

while N4 might have resulted from the addition of PCBM – somewhat different than the 

previous TSC and DLTS interpretations. Maybe most interesting is the deeper N5 trap state. This 

band is only vaguely seen in other TSC data, but showed a strong presence here. According to 

the authors, this type of level is often observed at the high-temperature edge and may be due 

to a weakening of the stimulated current.75 However, a similar band has also been noted 

through other techniques, potentially substantiating its existence. Further, one recalls the 

existence of a similar deep band in neat donor materials. Let us now turn attention to this band.    
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 Ea (eV)            Distribution 

  Type Gaussian Exponential 

   Ng0 (cm-3) σ (meV) Nt0 (cm-3) Et (eV) 

N1 0.06 Exp. - - 1.8x1017 0.03 

N2 0.12 Exp. - - 2.5x1018 0.03 

N3 0.14 Gauss. 8.2x1016 52 - - 

N4 0.20 Exp. - - 1.5x1019 0.03 

N5 0.35 Gauss. 2.7x1018 48 - - 

 

Table 3: parameters of electrically active trap distributions used in the curve-fitting procedure. 

Reprinted from publication [75], Copyright [2012], with permission from Elsevier.  

 

Prior to Yu’s work, this deep band had been studied using both CF and current modeling 

methods.38,76 The first such work came in 2009 and centered on an 

ITO/POEDOT:PSS/P3HT:PCBM/Ca/Ag structure. The CV work of Dennler et al. had shown the 

existence of a Schottky junction between the organic and metal cathode.14 Similar behavior was 

then suggested for blended films, allowing capacitance techniques to be leveraged on a BHJ 

system.77,78 Employing the CF measurement (Refer to section 2.5.5 for details), Boix et al. 

revealed a prominent, Gaussian shaped deep defect band centered at ca. 380 meV above the 

HOMO, with NT=1.2x1016 cm-3 and σT=66 meV (Figure 12), very similar to that mentioned in 

neat donor films.38 For reference, an attempt-to-escape frequency (ω0=2πν0) of 1x1012 s-1 was 

used (see equation (19)). One notes the immediate proximity of this band to the FTSC N5 trap 

(albeit two orders of magnitude lower in density),75 giving support to the presence of this deep 

trap in blended systems. Further, by comparing the energetic profile for active layers 
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comprising different P3HT:PCBM loadings – namely, 1:0.0, 1:0.4, 1:0.6, 1:0.8, 1:1.2 and 0:1.0 – 

Boix et al. showed the measured deep-defect distribution is not significantly affected by the 

presence of PCBM. This indicates that the band is inherent to the polymer donor. Interestingly, 

CV measurements show the ionized acceptor density in the blended films (ca. 4.3x1016 cm-3) is 

only slightly larger than that of neat P3HT devices (3.21016 cm-3).38 This indicates that the higher 

energetic disorder in blended films may not have a large effect on carrier concentration in 

these already moderately doped films.  

 

 

 

Figure 12: density of defect states as a function of the energy with respect to the P3HT HOMO 

level (demarcation energy), E - EHOMO, calculated using Equation (3) [of the original article] and 

the capacitance spectra in Figure 1(a) [see original article]. Gaussian DOS fits (Equation (5) [see 

original article]) are also displayed. Composition of the blend is marked in each distribution. 

Reprinted with permission from [38]. Copyright [2009], American Institute of Physics.  
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It is worth noting, Boix et al. later revised the mean energy of this defect band, citing a 

newly revealed attempt-to-escape frequency of 33.42 s-1 via temperature dependent CF 

measurements.79 This gives a revised mean energy of ca. 35 meV – an order of magnitude lower 

than the previously reported value and more like the DLTS ‘A-B’ bands than the TSC N5 band.79 

For some comparison, similar temperature dependent CF measurements have also been 

conducted on ITO/MDMO-PPV:PCBM/Al80 and ITO/PEDOT:PSS/MDMO-PPV:PCBM/Al81 based 

devices. The former finds a shallower trap centered on 24 to 34 meV with a ν0 in the range of 

1x107 s-1 (estimated from presented data).80 The latter report finds two trap bands centered on 

9 meV and 177 meV with characteristic escape frequencies of 1.3x107 s-1 and 7.6x109 s-1 

respectively.81 Campbell et al. also found an attempt-to-escape frequency in this range (1x108 s-

1) for PPV based devices, further corroborating the characteristic prefactor.61 One notes the 

sharp difference in ν0 between the P3HT and PPV materials and, of course, this highlights the 

necessity of obtaining an accurate value if one is to properly interpret measurements relying on 

emission data. It is also worth highlighting that Dyakonov et al.’s temperature dependent CF 

data shows similar trap behavior in PPV:PC60BM blended films to that in P3HT:PC60BM devices. 

From shallowest to deepest, bands with activation energies at 9, 22-34 and 177 meV have been 

identified and, of course, one might expect the presence of a the deeper, 750 meV level 

revealed by Campbell61 in neat PPV  – showing the qualitative resemblance to Figure 11.  

 

Nonetheless, the N5 trap band in P3HT:PC60BM BHJ devices was also shown by Nam et 

al. through current modeling measurements.76 The authors used SCL and Poole-Frenkel current 

models to study trap band concentrations in air-processed ITO/PEDOT:PSS/P3HT:PCBM/gold 
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(Au) OPVs.76 The selective Au cathode allowed hole transport (in the donor) to be isolated in 

reverse bias, which was subsequently subtracted from forward bias characteristics to yield 

information on the electron transport (in the acceptor). Hole current through P3HT was 

described by three main regions: (i) trap-filled SCL current in lower voltages, (ii) Poole 

conduction in intermediate voltages and (iii) Fowler-Nordheim tunneling at higher voltages. 

From region (ii), the total concentration of mid-gap states in the donor was calculated to be ca. 

6x1020 cm-3.76 This value is two to four orders of magnitude higher than what is typically 

reported for neat or blended cells. However, these devices were processed in open air, which is 

known to increase the impurity concentrations. The effects of oxygen on trap states in blended 

systems will be more directly addressed later on. In any case, at the intersection of regions (i) 

and (ii), the average trap activation energy was calculated in the range of 300 to 500 meV – in 

agreement with the TSC measurements and unrevised CF work deep defect band.38,75,76 As an 

interesting note, as expected from the neat film discussion, hole mobility in these air-processed 

devices was substantially lower than the typical values for devices processed in more inert 

atmospheres.  

 

Continuing with Nam’s work, electron transport in the PC60BM was also described by 

three main regions: (i) Schottky limited at lower bias, (ii) power-law SCL current at moderate 

bias and (iii) trap-free SCL current with a field-dependent mobility at higher biases. Using region 

(ii), with the assumption of an exponential DOS and the Equation (11) simplification (refer to 

section 2.5.3 for details), the authors found a relatively high electron trap density of ca. 1x1018 

cm-3.76 As with the case of hole traps, they suspect this heightened density to be oxygen-related 
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stemming from the open air fabrication – a thought which is supported by the afore-discussed 

optical works centered on C60, oxygen exposure and sub-gap states.53,54 Interestingly, a blend-

annealing process greatly increased the degraded electron mobility and pushed the power-law 

electron conduction towards trap-free transport.76 This aligns their PCBM electron transport 

with that reported by Nicolai et al. for inert atmosphere processed diodes and indicates that 

significant traps in PC60BM (and other acceptors) may be present if oxygen exposure is 

appreciable.65 Further, this highlights the well-known fact that thermal annealing is effective at 

removing structural defects and introduces the idea that oxygen induced states may be 

revisable by thermal treatments. 

 

In blends comprising of higher adduct fullerenes (e.g. bisPC61BM), enhanced disorder and 

electron trapping [when compared to PC60BM based blends] has been reported.66 Lenes et al. 

investigated such solar cells and found a sharp reduction in the current-voltage characteristics 

of electron single-carrier devices. Coupled with a Gaussian disorder model, enhanced energetic 

trapping in the higher adducts was found – in-line with that expected from the TSC 

measurements on neat fullerene films.66,67 Interestingly, the authors found that this additional 

disorder did not have any detrimental effects on the photovoltaic performance of the blends – 

indicating these traps are rapidly filled under illumination.66 This leads nicely into a discussion 

on how defects affect OPV performance. Clearly, trap states should only be considered if they 

have a substantial impact on electronic properties and photovoltaic conversion. The 

subsequent section discusses some important works highlighting such impacts.  

 



www.manaraa.com

41 
 

2.3.3 Traps and OPV performance 

Continuing the dialog on the impact of disorder in the acceptor portion, others have 

indicated these states may indeed have adverse effects on the achievable performance, even in 

PC60BM based BHJ devices. Garcia-Belmonte et al. have investigated the effects of fullerene 

electronic states in blended devices through open-circuit impedance spectroscopy (IS) (refer to 

section 2.5.7 for details).34 In the cited work, BHJ cells derived from blends of P3HT and PC60BM 

were compared to that of blends of P3HT and 4,4’-dihexyloxydiphenylmethano[60]fullerene 

(DPM6).34 A significant positive shift in the Voc of the DPM6 device was noted.34 To study its 

origins, the open-circuit impedance was measured at Illumination intensities corresponding to a 

Voc between ca. 200 and 800 mV. An energetic DOS was then generated, where g(EFn) was 

taken to be a single Gaussian distribution (Figure 13).34 The displayed states were termed 

intermediate to signify they lay below the fullerenes’ upper lying LUMO,34 indicating the 

measured DOS may be a part of the LUMO tail or a separate band altogether. Clearly seen in 

Figure 13 is a slight shift in central energy and a significant increase in the concentration of the 

PC60BM intermediate states. As a result, it is concluded that EFn in PCBM based devices is pinned 

at deeper energies within the intermediate-DOS distribution. This induced a reduction of the 

difference between the polymer EFp and fullerene EFn, thereby, reducing the achievable Voc. 
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Figure 13: capacitance values extracted from fits of the low-frequency arc of the impedance 

spectra as a function of Voc reached under varying illumination levels. White dots correspond to 

PCBM-based solar cells and black dots to DPM6-based solar cells. Gaussian DOS (solid lines) and 

distribution parameters resulting from fits. Reprinted with permission from [34]. Copyright 

[2010], American Chemical Society.  

 

Further, such bandgap residing states in both donor and acceptor portions of OPV 

devices may be detrimental to photovoltaic performance through recombination enhancement, 

especially if they are spatially located at or near a donor-acceptor domain interface. A recent 

work by Street et al. highlighted this by systematically exploring the recombination kinetics in 

BHJ organic solar cells, carefully examining the possibility of Auger, geminate and non-geminate 

exciton and interface state recombination. Though a series light-intensity and temperature 

dependent experiments coupled with theoretical modeling, the authors suggested mono-

molecular recombination through defects occurring at or near the domain interface(s) as a 

dominant loss mechanism plaguing photovoltaic performance.31 It should be stated that these 



www.manaraa.com

43 
 

experiments were conducted on PCDTBT (poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-

thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) PC70BM BHJ devices, 

however, the authors feel the conclusions may be general to other blended systems (such as 

P3HT:PCBM).31 Street et al. have also given some guidance as to improving OPV conversion 

efficiency – intuitively, by reducing the density of states at or near the domain interfaces. 

Interestingly, given a thicker device (200nm), the model employed by Street et al. suggested 

that even an order of magnitude reduction of the interface states could as much as double the 

device’s photovoltaic conversion efficiency.31 It is worth noting that some disagreement on this 

topic can be found throughout the literature.82,83   

 

Other works have investigated trap-assisted recombination more emperically.30,32 

Cowan et al. studied such a case for PCDTBT:PC60BM devices.32 The introduction of PC84BM 

impurities to the blend induced dramatic losses in the photovoltaic performance of the devices. 

Impurity concentrations as low as one part in one thousand were found to reduce conversion 

efficiency.32 The losses were directly linked to the intentional addition of  theses electronic 

states, which augmented trap-assisted recombination, hampered charge transport and reduced 

carrier mobility.32 By monitoring the open circuit voltage as a function of light intensity and trap 

density, the authors also gave some indication as to the impurity-level threshold where trap-

assisted losses become significant. This threshold will be contingent on several factors – with 

the trap density and generation rate (light intensity) being the most notable.32 Qualitatively 

speaking, Cowan et al. propose trap-assisted recombination effects become dominant at high 

trap densities and/or low light intensities. The works of Mandoc et al. give some 
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substantiation.30,84 In the first, the authors investigated the deliberate introduction of electron 

traps to devices derived from blends of PPV and PC60BM.30 A degradation of open circuit 

voltage, short circuit current and fill factor was clearly seen. Again, the losses were attributed 

to an enhancement in trap-assisted recombination,30 highlighting in the limit of high trap 

densities, trap-assisted losses can dominate. In a second work, Mandoc et al. studied all 

polymer solar cells based on a blend of PPV and PCNEPV (poly-[oxa-1,4-phenylene-(1-cyano-

1,2-vinylene)-(2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1,4-phenylene)-1,2-(2-cyanovinylene)-1,4-

phenylene]).84 No extra traps were added, however, inherent electron traps in the acceptor 

portion gave rise to a dominant trap-assisted recombination loss, but only at low light 

intensity.84 This gives substantiation to the second portion of Cowan et al.’s proposal. This also 

shows that in current and new material systems variations in structural disorder (inherent to 

the material or by varying fabrication parameters), variations in oxygen exposure, variations in 

synthesis impurities, etc. may induce varying amounts of trap-assisted losses – indicating trap 

states should be carefully monitored. Further, even if the trap states are kept at a reasonable 

level, they should not be forgotten as these solar cells under normal operating conditions will 

see lower light intensities, and thereby, trap-assisted loses.     

 

Aside from trap-assisted recombination, charge trapping is also thought to facilitate 

space charge effects.33,85 In a 2009 report, Mcneill et al. studied photocurrent transients in all 

polymer BHJ cells to reveal the trapping and detrapping of electrons.33 The transients were 

induced by the application of a square light wave at a given frequency, of which the pulse 

width, intensity and presence of background illumination (also of varying intensity) were 
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varried.33 A sharp transient peak just after turn on of the pulse coupled with long transient tail 

after turn off was revealed and attributed to the trapping/detrapping of electrons. The authors 

proposed such trapping may facilitate space charge effects, where charges trapped near the 

anode would perturb the internal electric field to: (i) decrease the probability of charge 

separation and (ii) promote bimolecular recombination.33 Both of which yield loses in 

conversion efficiency.  

 

Before continuing on to a discussion on trap origins, it is worth segwaying to the 

identification and characterization of electronic defects at the edges of the blend; that is, at the 

blend-electrode interfaces. 

 

2.3.4 Electrode interface states 

Electronic states at the interfaces between the BHJ blend and charge collection layers 

have also been identified. Towards the anode, Ecker et al. have profiled trap bands using the CF 

measurement in ITO\hole transport layer (HTL)\P3HT:PCBM\Ca\Al structured cells.86 Devices 

comprising different HTLs, namely PEDOT:PSS and polyaniline:poly(styrene sulfonate) 

(PANI:PSS) based in water and alcohol solvents, were examined.86 The CF experiments were 

conducted under 16 mW/cm2 and 100 mW/cm2 illuminations at open circuit conditions. Two 

Gaussian distributions in the energetic tDOS were revealed. The first, lower energy distribution 

was attributed to bulk states. A ν0 was not measured or assumed, thus, a comparison with the 

other CF experiments cannot be made. Though, it is likely that these states are the same deep 

states as those previously mentioned.21,38 The second, higher energy Gaussian was attributed to 
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electronic states at the HTL interface. The concentration of the interface states was found to be 

significantly higher than that of the bulk states, highlighting their strong presence in this 

system. Interestingly, non-encapsulated devices with HTLs based in water solvents presented 

with additional trap states at the blend-HTL interface,86 showing the importance of defect 

considerations when choosing such interlayers. It is interesting to speculate how these traps 

may affect OPV performance. Most conducive may be the space charge effects discussed by 

McNeill et al., where charges trapped near the anode may retard charge separation and 

promote bimolecular recombination.33  

 

Near the cathode, Bisquert et al. have also identified interface trap states.87 Similar to 

Ecker et al., the interface states were identified through capacitance measurements under 

illumination – here, CV measurements  on an ITO/PEDOT:PSS/P3HT:PCBM/Al structure were 

studied.87 The extracted ionized acceptor density was similar in both dark and illuminated 

conditions (ca. 4-5.0x1016 cm-3); however, the built-in potential was found negatively shifted by 

0.6 V in the illuminated case. This shift is explained through a photovoltaic model which 

incorporated a concentration of kinetically slow surface states at the organic-metal junction.87 

Under illumination an accumulation of minority charges, and thereby a charging of surface 

states, induces band unpinning and the noted Vbi shift.87 This change in energetics may 

significantly alter photovoltaic performance,87 again highlighting the importance of defect 

considerations at layer interfaces. Further quantification of these states has not yet been given. 
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2.3.5 Trap origins: Oxygen, structural and synthesis residuals 

Having discussed the identification of trap states throughout the BHJ structure, let us now 

find some indication as to the origins of the blend-film trap states. I first return to the 2010 TSC 

work on BHJ ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al structures.36 Coupled with the thermal 

experiments, CELIV and IV measurements as a function of synthetic air (80% N2, 20% O2, < 1 

ppm H2O) exposure were examined. Upon exposure, in contrast to the case of neat P3HT, the 

magnitude of the 105 meV trap appears to decrease.36,56 However, a new band at ca. 142 meV 

emerged, with a concentration linked to exposure time.36 As a result, the total trap density in 

the measured energy spectrum remained constant through 100 hr of exposure.36 Though, it 

must be noted that the measurement only gives a lower limit for the total trap density (refer to 

section 2.5.1 for details). The recombination of charge carriers could be masking an increase in 

trap density and/or causing the apparent decrease of the 105 meV band. Nonetheless, it is clear 

that oxygen is inducing or augmenting states somewhat deeper in energy. This data is 

supplemented with CELIV mobility and carrier density measurements. A decrease in carrier 

mobility along with an increases in charge density was found.36 This is in line with that expected 

from the discussion on unblended systems. This data, coupled with macroscopic simulations, is 

correlated to degradations in the solar cell IV. The authors assert increased carrier densities 

dominate the degradation of Jsc, while the increased deep(er) trap concentration may be at the 

origin of Voc and FF degradation,36 perhaps through enhanced trap-assisted recombination 

losses and space charge effects. The link between excess charge carriers and Jsc degradation is 

supported by Seemann et al., who noted a large portion of oxygen-induced degradation stems 

from excess mobile holes and immobile superoxide anions.46 Interestingly, an experimental 
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correlation between photocurrent and the concentration of charge carriers in blended 

P3HT:PCBM was noted by Guerrero et al., who found Jsc∝n-0.14.68 Clearly, the oxygen generation 

or enhancement of bandgap residing states has a significant effect on the long term stability of 

these devices. Please note, the topic of degradation is vast and, though heavily related, beyond 

of the scope of this chapter. Many excellent reports can be found in the literature, I have 

chosen only to comment on a select few which indicate some effects of degradation on the trap 

states. A full review on OPV degradation can be found elsewhere.88  

 

Turning to the yet deeper (ca. 380 meV) band discussed above, details as to its formation 

have been provided by Nalwa et al., who applied the CF method to 

ITO/PEDOT:PSS/P3HT:PCBM/Al cells with active layers spun at different rates.21 Each spin rate 

produces a different film thickness, which greatly alters the drying time, and thereby, 

morphological ordering.60 Many prior reports had shown the promotion of self-assembly 

improves OPV performance through enhanced morphology, carrier mobility, etc.60 Thus, the 

authors set out to study the dependence of the deep-trap energetic profile on the film growth-

rate.21 The group found that films spun at lower speeds (thicker and slower drying) are more 

ordered and contained nearly a magnitude less deep traps than those spun at higher speeds 

(thinner and faster drying). Defect densities of 3.3x1015 and 2.1x1016 cm-3 and mean energies of 

360 and 380 eV (ν0 = 1x1012 s-1) were found for devices with active layers spun at 400 and 1,000 

rpm respectively.21 If the assumed attempt-to-escape frequency is accepted, this band closely 

matches the above reports and the data indicates the defect has origins in intrinsic structural 

impurities. A similar case was also shown by Sharma et al. for CuPc based devices.89 
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Of course, impurities from synthesis residuals cannot be forgotten. As discussed in section 

2.2.5, contamination during material synthesis can have detrimental effects on device 

parameters. In the case of a palladium catalyst, this has been evidently highlighted for 

P3HT:PCBM based BHJ devices.72,74 In their work on the development of a quality control 

measurement tool, Troshin et al. investigated the effects of an intentional addition of 

tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) to P3HT:PCBM cells.72 0% to 10.5% by 

weight addition of palladium was investigated. As can be seen in Figure 14, the transition metal 

has a dramatic effect on the solar performance parameters. With an increasing impurity 

concentration open circuit voltage, short circuit current and fill factor were rapidly reduced. 

Even at palladium concentrations as low as 0.07% a reduction in performance was noted.72 A 

similar case has also been found for palladium additions in higher efficiency organic solar cells 

(based on PTB7 (poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-

fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]])), where the degradation in 

performance parameters in devices containing 5% (Pd(PPh3)4) was directly linked to greater 

trap-assisted recombination.73 This, of course, is in nice agreement with the works discussed 

above – that is, higher trap densities leads to a dominance of trap-assisted recombination 

losses. Extending to contaminants other than palladium, such a thought is further supported. In 

a work by Leong et al., trace concentrations of (MePT)DTS(PTTh2) in the molecular material p-

DTS(PTTh2)2 were found to originate from the synthesis process.17 Through generation and 

recombination studies, the authors found evidence of more energetic trap states in the impure 

films, even at very low contamination levels. As a result, this extrinsic impurity limited the PCE 
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of BHJ structured cells (ITO/molybdenum oxide/p-DTS(PTTh2)2:PC70BM.Al) to ca. 3.0%.17 Indeed, 

OPV devices based on more purified p-DTS(PTTh2)2 material exhibited a substantially higher PCE 

at ca. 6.5%, again highlighting the importance of purifying these types of extrinsic impurities.  

 

 

Figure 14: effect of [Palladium] impurities on the I-V characteristics of P3HT/PCBM organic solar 

cells. Reprinted with full permission from [72]. Copyright [2010], John Wiley and Sons. 

 

Evidently, the same primary sources inducing defects in neat films have similar effects on 

blended systems. Defect bands have been shown to be heavily influenced by the degree of 

structural ordering as well as by exposure to oxygen/moisture. Impurities introduced during 

material synthesis also clearly play a role; though it is unclear at this point which of the above-

discussed mid-gap levels can be attributed to residuals such as palladium. Nonetheless, this 

highlights the path towards lowering electronic defects in OPV devices likely includes structural 

ordering, the removal and minimization of oxygen exposure and the purification of raw 

materials. 
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2.4 Identification and characterization: miscellaneous loose ends 

Before moving forward, this section is used to tie up loose ends pertaining to the important 

and ubiquitous capacitance measurements. Much work has gone into interpreting the 

capacitive response of inorganic cells and I suspect the same will prove true for organics. The 

goal of this section is to provide some contrast to the works above and direct the reader toward 

alternate interpretations as well as known issues.  

 

First, the dual MS slope commonly seen in CV measurements must be revisited. The works 

above interpreted this change in slope as either spatial contributions from an inhomogenous 

doping profile or energetic contributions from a deep defect band. However, other 

interpretations have been applied to organic CV profiles and should be considered. One such 

explanation was provided by Nolasco et al. in 2010 as well as Ecker et al. in 2011.86,90 In the 

latter, the BHJ CV data clearly contains two regimes with differing slopes. The first, at low 

forward/reverse bias, was attributed to the ‘donor phase’, while the second, at moderate 

reverse bias, was attributed to the ‘acceptor phase’. Meaning, in region (i), the authors assume 

ND PCBM >> NA P3HT – creating a one-sided junction where the MS slope is governed by NA P3HT. In 

region (ii), as the P3HT depletes, ND PCBM begins to dominate and a new slope emerges. The 

authors find NA
-
P3HT = 1.0 to 3.0x1016 cm-3 and ND

+
PCBM = 0.5 to 2.5x1018 cm-3, both in line with 

the expected values. Aside from highlighting an alternative interpretation of the dual slope, this 

also brings about an interesting discussion on which junction in the BHJ structure is being 

probed by the capacitance experiments. It is clear that Ecker et al. have assumed the donor-
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acceptor junction, much like a classical p-n treatment. However, others have indicated that the 

Schottky junction between the polymer and cathode is being measured.38,78 Of course one 

might also consider contributions from a Schottky junction between the fullerene and anode, 

which is expected to form with proper energy alignment and moderate doping.58,91 Though, 

more heavily doped fullerenes may show essentially ohmic behavior.58  Some combination 

thereof might also be considered. More work is required to pinpoint the exact nature. 

 

Similarly, alternative interpretations of CF have surfaced. The formalism used in the above 

reports was presented by Walter et al. in 1996.92 However, Cohen and Lang have also discussed 

the dynamic response of Schottky barriers and interpretations of their model have been applied 

in organic works.93-95 Most interesting is that by Reis et al. in which capacitance measurements 

as a function of both frequency and temperature were analyzed using a derivation96 of the 

model described by Cohen and Lang as well as that described by Walter et al. (Au/doped-

polyaniline/Al structure).94 Interestingly, a comparison of the density of defects derived from 

each model showed they were in good agreement.94 Being that both yield a similar 

concentration, it is my interpretation that the Mencaraglia et al. application of the Cohen 

formalism is advantageous as the Fermi-level and Debye length [among other parameters] are 

easily found; while the Walter formalism is advantageous as an energetic profile of the tDOS is 

obtained. The latter is typically preferred, though a best case scenario may be represented by 

an analysis and comparison of both models. Of course, one must also ensure the assumptions 

of each model are suitable for the material system at hand. 
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Figure 15: Vbi (black diamonds, determined as shown in Fig. 5 [of the original article]), Voc (red 

triangles), Vpos (purple squares), and Vcv (green circles) for P3HT:PC61BM bulk heterojunction 

solar cells with varying active layer thickness. In contrast to Voc, Vpos, and Vbi, Vcv shows a clear 

dependency on the active layer thickness (increases with decreasing thickness) and approaches 

Vpos. The dotted lines are guides to the eyes and mark the mean values of the corresponding 

potentials resp. an exponential fit to Vcv. Reprinted with permission from [97]. Copyright [2011] 

by the American Physical Society.   

 

Lastly, potential issues in the MS CV analysis must be mentioned. In 2011, Mingebach et al. 

reviewed the validity of determining the built in voltage of OPV devices via the MS method.97 

Though this paper itself does not directly discuss defects, its conclusions are important to 

examine as the Walter et al. CF method relies on an accurate value of Vbi, which is typically 

determined by MS analysis. Citing differences in the MS measured and theoretically expected 

Vbi, the interpretation of the MS intercept as the built in voltage was questioned. Further, a 

thickness dependence in the MS measured Vbi was found (Figure 15); another indication the 
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measurement may not be accurate.97 These points, coupled with temperature-dependent 

measurements, caused Mingebach et al. to conclude that the classical idea of the MS intercept 

may not be applicable to BHJ based OPVs. Kirchartz et al. further studied this concept in 2012.98 

The group started with the question of how OPV devices can have a Vbi significantly lower than 

Voc (as measured from CV MS), but still produce efficient cells with practical FFs.98 Through 

simulations and experimental work, the authors showed that MS analysis on OPV devices is 

highly sensitive to both film thickness and the inherent doping level.98 In too thin or lowly 

doped films, charge carriers injected near the electrodes cannot be neglected. This breakdown 

in the depletion approximation greatly affects the accuracy of the capacitance data, and 

thereby, may cause errors in the analysis. Most notable is an apparent decrease in NA
-
 with 

increasing film thickness. In the case of a film doped to 5x1015 cm-3, it is only at thicknesses 

greater than ca. 150 nm that the measured density of acceptor states saturates to the 

appropriate level and the method is considered generally applicable. Similar to Mingebach et 

al.,97 this thickness dependence was also seen in Vbi  – a result directly connected to the 

apparent decrease in doping. As a result of the work, the authors assert that CV analysis for the 

accurate determination of NA
- may only be appropriate when films are thick and/or more 

heavily doped, while the accurate determination of Vbi may be difficult, no matter the material 

parameters.98 Of course, with the assumption that these capacitance measurements target only 

the polymer-cathode Schottky interface, one might consider that the obtained Vbi relates only 

to that particular junction and does not set an upper limit on the photovoltaic voltage.99  
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2.5 Measurement techniques 

To conclude this introductory chapter, the basic concepts of commonplace defect 

measurement techniques are presented. A summary, quantification and relevant references are 

presented for each.   

 

2.5.1 Thermally stimulated current (TSC) 

 In a basic sense, the conventional TSC method can be understood as follows. The 

sample is first cooled to cryogenic (or near cryogenic) temperatures and excess charge carriers 

are generated (e.g. optically or through a pulsed voltage bias) to induce a long-lived filling of 

the trap states. Subsequently, the sample is slowly heated at a linear rate, stored charges are 

thermally emitted and the stimulated current is monitored. Thereby, a current versus 

temperature (e.g. Figure 3) spectrum is generated. Both the concentration and mean energy of 

the dominate trap can then be calculated. The former is quantified by,  

 

            
     

 

 

(3) 

 

 

where ITSC is the thermally stimulated current and q the elementary charge.100,101 As can be 

seen, this technique only gives a lower limit of the total trap density. Recombination between 

thermally released electrons and holes can cause some stimulated current to be ‘lost’, lowering 
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the measured trap states. Further, incomplete trap filling and/or limited detrapping can also 

lower the measured results. The mean trap energy is quantified by, 

 

            
    

 

 
  (4) 

 

where kB is the Boltmann constant, Tmax the temperature at the current peak and β the heating 

rate.102 

 

2.5.2 Fractional thermally stimulated current (FTSC) 

 An extension of the conventional method in which fractional heating cycles are used 

to further resolve the temperature/energy spectrum is known as Tstart-Tstop or fractional TSC 

(Figure 16).103 As usual, the sample is first cooled to a minimum temperature (Tstart) and then 

trap filled. However, the sample is next scanned (heated) to an intermediate end temperature 

(Tstop), which is less than the final temperature of interest – ‘prerelease’. Subsequently, the 

sample is again cooled to Tstart and then, without a second trap filling, scanned to said final 

temperature – ‘main run’.  This fractional cycle is then repeated for increasing Tstop 

temperatures. Assuming the initial rise of the fractional TSC interval (Figure 16) is described by 

a Boltzmann activated process, the activation energy for each Tstop can be found via the ‘initial 

rise method’, which is quantified by, 

 

           
   

   
  (5) 
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where IiTSC is the current of the initial rise and T the temperature.103,104 The activation energy 

can then be coupled with a concentration, calculated from Equation (3), to build an energetic 

tDOS. 

 

 

Figure 16: schematics of the Tstart-Tstop method: (a) the basic cycle consists of two individual TSC 

scans and (b) the whole measurement is a replication of basic cycles with different Tstop 

temperatures. The activation energy of the initial rise describes the energetic trap depth, while 

the shaded area resembles the released charge. Reprinted from publication [102], Copyright 

[1990], with permission from Elsevier. 
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2.5.3 Space charge limited (SCL) current modeling 

 Dark current-voltage characteristics can also be examined to determine trapping 

parameters. Neglecting diffusion and assuming a constant mobility, the current density in a 

single carrier, p-type material is described by, 

 

               (6) 

 

where µp is the hole mobility, F(x) the spatial distribution of the electric field and pf(x) the 

spatial density of free holes.55,105,106 The spatial distribution of the electric field is given by the 

Poisson equation,  

 

     

  
 

 

  
              (7) 

 

where εs is the semiconductor permittivity and pT(x) the spatial density of trapped holes, which 

is defined by,  

 

                       
 

 

 (8) 

 

where g(E) is the DOS and f(E,EF,T) the Fermi function for occupation.55,105,106 Thus, with the 

definition of EF(x),105 numerical integration yields a current density, which can be coupled to a 

voltage via,  
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 (9) 

 

where d is the sample thickness.55 Extensive modeling as such yields information on the 

energetic distribution. If an exponential or Gaussian distribution of traps is assumed such that pf 

< pT, some further simplifications can be made. In the case of an exponential distribution, 

 

     
  

    
    

  

    
  (10) 

 

where TT is the characteristic temperature, the drift-only current density is readily 

approximated by, 

 

            
    

   
 
   

 
 

   

  

  
 
     

     
 (11) 

 

where V is the voltage and   = TT/T.107 When a Gaussian distribution is assumed, 

 

      
  

     

      
      

 

   
   (12) 

 

two considerations must be made. For shallow trap centers, the current density is 

approximated by a modified Mott-Gurney law,  
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    ⍬

  

  
 (13) 

 

where ⍬ is a scaling factor108 and µp⍬ represents the effective mobility dependent on the ratio 

of free to trapped charges. For deep trap centers, the current density is again approximated by 

Equation (11), but with a modified exponent (  ) and concentration of trap states (  
 ).108 In 

contrast to these simplifications, others have gone the opposite direction to employ more 

complex modeling which accounts for diffusion current as well as electric-field and carrier 

concentration dependencies of the mobility.109 It should also be pointed out that the use of SCL 

and modified SCL models is seemingly ubiquitous in the device literature, however, its 

application to π-conjugated polymers has been called into question.39 

  

2.5.4 Capacitance versus voltage (CV) 

Capacitance measurements have long been employed to study mid-gap states in 

semiconductor devices. CV measurements exploit the existence of a depletion region, formed 

at a semiconductor junction. Consider, for example, an ideal p-semiconductor/metal Schottky 

junction. In such a case the depletion capacitance is defined by,  

 

   
   

  , (14) 

 

which can be linearized to reveal the well-known Mott-Schottky (MS) relation,  
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            (15) 

 

where W is the depletion width, NA is the acceptor impurity density, Vbi the built in voltage and 

Vapp the applied bias.62 Strictly speaking, a better approximation replaces Vbi with VD, where VD 

is the diffusion potential and related to Vbi by qVbi = EF + qVD.110 Nonetheless, a plot of 1/C2 

versus the applied DC voltage produces a straight line with the slope related to NA and the 

intercept to Vbi. In an inhomogeneously doped material, the spatial distribution of acceptor 

states can be determined through the related profiler equation,  

 

       
  

     

  

  
 (16) 

 

where x is the spatial distance from the junction. These equations, however, represent an 

idealization of a perfect, pure material. When deep defects are present, especially if they are in 

large numbers, several considerations must be made to properly interpret capacitance data. 

Most notably, defect contributions to the capacitance as a function of DC bias as well as AC 

frequency must be accounted for. The former is briefly summarized here and the latter is 

addressed in section 2.5.5.  

 

The influence of deep traps on CV measurements was discussed by Kimerling in 1973.63 

Though many considerations must be made to accurately employ the interpretation, the 
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formalism can be summarized as follows. In the popular case when trap emission (en,p) is slower 

than the AC measurement frequency (νAC) the trap is considered frozen and does not contribute 

to the capacitance as a function of the small-signal oscillation. However, if trap emission is 

faster than the change in DC voltage (∆VDC), the trap can alter its occupancy over the course of 

the voltage sweep, and thereby, contribute to the capacitance as function of DC bias.63 In such 

a case, νAC > ep,n > ∆VDC and the ‘NA’ measured by Equation (15) or (16) actually represents,  

 

               
    

 
         (17) 

 

where xT is the spatial demarcation where ET  is within kBT of EF and W-xT is assumed 

constant.62,63 Thus, when xT is small, NA(x) indeed represents NA. However, for larger values of 

xT (note, xT is always less than W), NA(x) more closely represents NA+NT. 

 

2.5.5 Capacitance versus frequency (CF) 

Deep defects states can also contribute to the capacitance measurement through a 

dynamic response to the AC small-signal. This forms the basis for capacitance versus frequency 

(CF) measurements, which were discussed by Walter et al. in 1996.92 CF, also termed 

admittance spectroscopy, is a frequency differential in which the junction is maintained at a 

steady state DC voltage and the modulation speed of the small-signal AC measurement is swept 

to include (or exclude) trap states. The thermal emission rate of a trap state in a p-type 

semiconductor is quantified by,  

   



www.manaraa.com

63 
 

 

  
                

   

   
  (18) 

 

where NV is the valence band density of states, vth the thermal velocity, σp the capture cross-

section, Ea the trap activation energy.62,81  In inorganic device physics, with an assumption that 

vth∝T1/2,  NV∝T3/2 and σp independent of T, the prefactor in Equation (18)  is commonly written in 

terms of T2
 – e.g. ‘ζT2’ or ‘ϒσpT2’ where ζ=NVvthT-2σp and ϒ= NVvthT-2 respectively.62,81 

Alternatively, the prefactor is often written as a single, temperature independent parameter, 

ν0, termed the attempt-to-escape frequency. 84, 111 Taking the latter, the switching speed of the 

small-signal measurement inherently defines an energy demarcation which divides those 

defects that can emit charge and contribute to the capacitance from those that cannot,62,92,111  

 

         
  

 
  (19) 

 

where ω is the applied angular frequency. As ω is swept from high to low frequencies, the 

demarcation energy is moved from below the Fermi-level, where no states can respond, to 

above the trap level(s), where all states respond (Figure 17).62,92 Note that only those states at 

the Fermi-level efficiently contribute and, in the low frequency limit, only those states between 

the mid-gap and Fermi-level will be probed.92 An energetic profile of the tDOS can be found 

via,92 
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  (20) 

 

This profile is then fit with a Guassian or exponential model and the characteristic trap 

parameters are extracted.  

 

 

Figure 17: simplified p-type Schottky band diagram showing the CF experiment. EF shows the 

Fermi-level energy, ET the trap level, Eω1 a high frequency demarcation where no states can 

respond and Eω2 a low frequency demarcation where all states can respond.  

 

2.5.6 Drive-level transient spectroscopy (DLTS) 

Also exploiting the depletion capacitance is DLTS. This powerful capacitance technique 

monitors transient changes in the capacitance signal induced by a voltage or optical pulse to 

study trap characteristics.62 The technique was pioneered for crystalline semiconductors and 

later extended for amorphous materials.112,113 Though the approach is slightly more in depth, 

the advantages lay in the extracted parameters. Along with trap band magnitudes, capture 

cross-section and activation energies, emission rates and trap types (i.e. majority or minority 

trap) can be easily examined.62 It is worth noting, Sharma et al. have cautioned that, owing to 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxET
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the high resistivity and low hole mobility of some organic layers, DLTS may not be a suitable 

defect characterization technique for all organic applications.89 and ref [12] therein  

 

2.5.7 Open-circuit impedance spectroscopy (IS) 

Though the strict definition of impedance spectroscopy (IS) might include the previously 

discussed CF and CV measurements, I have kept their nomenclature separated in order to 

highlight a segregation in their use and analysis. Nonetheless, the IS method considered here is 

simply an application of the CF measurement at different, typical forward, voltage potentials. 

The results are typified by a Cole-Cole plot and can be used to study the density of 

photogenerated carriers, carrier mobility, carrier lifetime and the electron density of 

state.34,78,99 In the latter, which is of particular interest here, the impedance characteristics are 

measured at open circuit conditions, where recombination precisely balances generation 

(Figure 18).99 To accomplish this, the photovoltaic device is illuminated at different intensities 

and a bias is applied to compensate the photovoltage. As such, the steady-state complex 

impedance examined is that of a chemical capacitance,34,78,refs therein  which is dominated by 

changes in the electron quasiFermi-level (EFn) and defined by,  

 

  

 
      

    
  (21) 

 

where L is the active layer thickness. 99 Assuming a zero-temperature Fermi distribution,99  
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          . (22) 

 

Thereby, with small-scale movement of the polymer EFp, the fullerene DOS in the BHJ blend is 

readily obtained as EFn moves through the distribution at different illumination intensities 

(Figure 18). 

 

 

Figure 18: band structure of the P3HT:PCBM heterojunction in steady-state illumination under 

open-circuit conditions (V=Voc). Main dynamic processes occurring in the blend layer: excess 

holes and electrons are photogenerated (1) into the P3HT HOMO and PCBM LUMO manifolds, 

respectively. Charge carriers diffuse along the diode bulk (2), and eventually recombine (3). 

Molecular orbitals spread in energy (DOS) following Gaussian shapes. The occupancy level of 

LUMO (HOMO) states is determined by competing photogeneration and recombination rates. 

This in turn governs the achievable Voc which depends on the splitting of the quasiFermi-levels, 

-qVoc=EFn-EFp. The DOS centers are located at ELUMO and EHOMO, respectively. The relative 

position of the Fermi-level in the dark EF0 is also indicated. Reprinted from publication [99], 

Copyright [2010], with permission from Elsevier. 
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3 CHAPTER III: ON ACCURATE CAPACITANCE OF OPV DEVICES 

 

It is the goal of this dissertation to add to the works described above and push the 

identification and characterization of defect bands in OPV devices forward. As will become 

apparent in the subsequent chapters, impedance spectroscopy – namely, capacitance versus 

frequency and capacitance versus voltage – is the author’s measurement of choice as it gives 

detailed information on the deep defect states in the system. Thus, as an initial study, work 

detailing the accurate capacitance characterization of OPV devices is presented. This work was 

published in Applied Physics Letters in 2011.114 

 

3.1.1 Project introduction and motivation 

Capacitance spectroscopy has been employed to study semiconductor properties for many 

years. As mentioned in Chapter II, these techniques have been recently adopted by the organic 

photovoltaic (PV) community to probe device aspects such as doping density,14,59,115 deep trap 

states,21,38,89 carrier mobility,59 active layer thickness116 and the like. It is well understood that 

these measurements can be very sensitive, and are plagued by issues such as high impedances, 

leaky capacitances and noisy cabling. Of upmost importance in maintaining reliable 

measurements is the selection of the proper model (e.g. parallel, series or multiple parameters) 

during the measurement process. A conventional measurement employs the equivalent circuit 

shown in Figure 19(a), where Rs represents the series resistance, Rp the parallel resistance and 

C the capacitance. With three unknowns, measurements must be taken at two frequencies and 

complex equations must be solved to find the capacitance and its associated parasitics; see 

reference [117] for example.117 For simplicity, this equivalent circuit can be accurately modeled 
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by either the series (highlighted by blue, solid box) or parallel (highlighted by red, dashed box) 

segment, depending on which portion dominates as per the capacitance, resistances, 

frequency, etc. In a typical solar cell, the series resistance is expected to be quite small and the 

parallel resistance quite large. Therefore, for large capacitive impedances, the parallel portion 

overshadows that of the series and dominates the measurements. In this case, the parallel 

model gives an accurate approximation of the equivalent circuit. In contrast, as the magnitude 

of capacitive impedance approaches that of the series resistance, the series model gives the 

most accurate approximation. Within the inorganic community, parallel parameters are 

typically employed. Owing to smaller series resistances and larger capacitive impedances, this 

parallel model remains accurate over the usual frequencies employed (e.g. 10 Hz – 2 MHz). In 

this report, it is shown that this detail is not directly transferrable to organic PV cells – the 

parallel parameters cannot be indiscriminately used. When comparing organic and inorganic 

cells with similar contact area, our data shows series resistances are typically two or more times 

higher and capacitive impedances three or more times lower in the organic devices. This moves 

the transition from the parallel model to the series model to lower frequencies – which can be 

within the range of interest. Thus, a hybrid of the two models must be employed to accurately 

measure the capacitance over the frequency range of interest. It is shown that, if the improper 

parameters are used, geometric capacitances are underestimated, deep trap states are 

overestimated and general conclusions are greatly misinterpreted. Although model choice may 

be a known concept, several evidences of improper model usage within the organic PV 

literature can be found.  
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Figure 19: (a) simple equivalent circuit for small signal measurements. Any lead inductance is 

neglected here. The series approximation is highlighted by a solid blue box and the parallel by a 

dashed red box. (b) Capacitance (1/C2) versus frequency for a PCBM only device. Both Cs and Cp 

parameters are shown. The calculated geometric capacitance is highlighted by a gray line. 

 

3.1.2 Experimental and photovoltaic performance 

BHJ based cells were fabricated from P3HT (NANO C, Inc.) and PCBM (NANO C, Inc.). 

Solutions of 1:0, 1:1, and 0:1 by weight P3HT:PCBM were mixed with ortho-Dichlorobenze (ca. 

10 or 20mg/ml; Sigma-Alrich) and magnetically stirred at 45ºC for at least 12 hours in an argon 

atmosphere. Indium-doped tin oxide (ITO; Delta Technologies) substrates were then treated by 

consecutive 5 minute sonications in four solutions: (i) isopropyl and acetone (50:50 v/v), (ii) 

detergent mixed with deionized water, (iii) ethanol and methanol (50:50 v/v), and (iv) pure 

deionized water. The ITO substrates were then blown dry with nitrogen and treated with air 

plasma (Harrick Scientifc) for 5 minutes. A ca. 28 nm (characterized by optical, as well as, 

surface profile techniques) poly(ethylenedioxythiophene): poly(styrenesulfonic acid) 

(PEDOT:PSS; H C Stark) film was spin-coated (4,000 rpm for 60 s in open air) onto the treated 

1/Cg
2

Parallel SeriesBoth
(a) (b)

Rs

Rp

C
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substrates, and the casted films were annealed on a digital hot plate at 120 ºC for 10 min in 

open air. The blend solutions were then filtered via glass syringe and a 0.20 µm PTFE filter 

(Sigma-Aldrich). The active layer was then spun at 500 rpm for 60 s onto the PEDOT covered 

substrates in an argon atmosphere. The films were slow dried in individual Petri dishes to allow 

for solvent annealing. Lastly, a ca. 1500 Å thick Al cathode was thermally evaporated onto all 

devices at a rate < 5 Å/s under a 10-5 to 10-6 mBar vacuum. The completed organic solar cells 

were then allowed to cool to room temperature before beginning characterization.  

 

To ensure photovoltaic behavior, current density versus voltage characteristics (Figure 20) 

were taken by illuminating the devices at room temperature using an ELH quartzline lamp at 1 

sun (calibrated using a KG-5 filtered crystalline silicon reference photodiode). Table 4 

summarizes the device performance.  

 

Voc (V) Jsc (mA/cm
2
) FF (%) PCE (%) 

0.60 9.30 58.20 3.25 

 

Table 4: summary of photovoltaic performance parameters for a sample P3HT:PCBM device. 
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Figure 20: photovoltaic performance of the studied P3HT:PC60BM BHJ cells. 

 

Capacitance data was taken on two different setups to ensure accuracy: the first being a 

PARSTAT 2273 (defined working range of ±10 VDC and 10 µ - 1 MHz), and the second being a 

Quadtech 1920 LCR (defined working range of ±2 VDC and 20 – 1 MHz). Both setups were 

calibrated using a low loss 715p orange drop capacitor (Vishay). Measurements were 

conducted at room temperature and in dark conditions to ensure optical, as well as, thermal 

equilibrium. Both impedance and admittance parameters were recorded for comparison in post 

processing calculations. The dissipation factor (d) was carefully monitored and all data 

associated with d >10 was neglected. Thickness measurements were conducted on an atomic 

force microscope (AFM) by scratching the film with a sharp needle and measuring the step 

height. 

 

3.1.3 Capacitance profiling of OPV devices 

PCBM only: as an initial example, I first turn to the capacitance versus frequency (CF) 

measurement of a PCBM only device. PCBM is a fullerene derivative of the C60 (or C70) buckyball 
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that does not show deep state characteristics in its CF profile. Thus, a flat capacitive response 

with respect to frequency is expected.38 This response represents a geometric capacitance, Cg = 

ϵA/t (ϵ ≡ the permittivity, A ≡ contact area, and t ≡ thickness), in which only the dielectric is 

contributing. Figure 19(b) displays the CF spectra of one such device. One immediately notes 

the geometric capacitance (horizontal gray line at ca. 6.5x1015 1/F2 according to the measured 

thickness of ca. 35 nm, A =.1256 cm2 and ϵ = 3.9) requires both models to be accurately 

represented between 100 Hz and 1 MHz – a typical frequency range of interest as it reaches 

from near the Fermi-level118 to above the deep trap profile.21,38 For those frequencies below 7.5 

kHz, the parallel parameters gave the best measurement as high impedances of the parallel 

portion of the circuit overshadow that of the series component and dominate the voltage 

divider. Between 7.5 kHz and 100 kHz both models gave a good approximation, differing by less 

than 1%. At frequencies above 100 kHz the series model gave the best approximation. At these 

frequencies, the parallel impedance-combination of Rp and C falls rapidly owing to the lowering 

of the capacitive impedance. As this impedance becomes comparable with Rs, the series 

resistance becomes significant and can no longer be ignored. The large parallel resistance, 

however, acts as a current divider and, with sufficiently small capacitive impedances, can be 

neglected. Note that the typically thin active layer of organic films (ca. 100-200 nm) gives a 

larger capacitance, which causes this transition from the parallel to series to emerge at much 

lower frequencies than their inorganic counterparts. Frequencies below 100 Hz gave dissipation 

factors as high as ca. 50, indicating a very leaky capacitor whose measurement is most likely 

overwhelmed by noise. Above 2 MHz it is expected that the series model will continue to 
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dominate. The PCBM device data illustrates the notion that indiscriminately using a parallel 

approximation across the spectrum does not transfer to organics. 

 

P3HT:PCBM BHJ devices: the above directly translates to bulk heterojunction (BHJ) 

devices comprising a 1:1 weight ratio of P3HT:PCBM. Figure 21(a) plots C versus F for one such 

device. A pattern similar to the PCBM only device emerges, where lower frequencies favor the 

parallel approximation, higher frequencies favor the series and those in-between can be 

estimated by either. One notes the parallel model still gives relatively reasonable values at 

higher frequencies. However, these values differ from the series model by anywhere between 1 

and nearly 200% for this particular device. The choice of which of these models is most accurate 

is convoluted by the fact that, unlike PCBM only devices, the polymer adds a deep-trap 

profile.10,14,21,38 Thus, the expected capacitance is somewhat unknown. However, at sufficiently 

high frequencies, the demarcation energy at which neither mobile charges nor trap states 

respond can be surpassed and only the dielectric contributes to the capacitance. Thus, the 

geometric capacitance should be expected. This frequency was found experimentally to be ca. 

1.5 to 2 MHz depending on the particular device. Qualitatively, the energy corresponding to this 

frequency range makes sense as it is nearing or slightly less than the equilibrium Fermi-level of 

P3HT (ca. 0.33 eV with doping ca. 1x1016 – 1x1017 cm-3 as determined by 1 MHz capacitance 

versus voltage (CV) analysis63). This geometric capacitance is further confirmed by applying a 

large (-2 VDC) reverse bias along with the entire small-signal frequency spectra in order to fully 

deplete the active layer – the same Cg was obtained for all frequencies at -2 VDC. Keeping this 

geometric capacitance in mind, the series model gave the most accurate approximation above 
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1.5 MHz. Further, note that only the series capacitance reaches a plateau at these frequencies, 

while the parallel capacitance continues to drop. Extrapolating back, this indicates that the 

series model should be used for all frequencies greater than 11 kHz in these particular devices. 

This has two main implications for common applications of capacitance measurements: (i) Cg 

and thickness measurements and (ii) determination of deep trap profiles. Both will be discussed 

in detail later in this chapter.  

 

 

Figure 21: (a) capacitance versus frequency for a typical P3HT:PCBM 1:1 BHJ PV device. The 

ellipse highlights differences in the geometric capacitance obtained by each model. (b) 

Impedance versus frequency plots showing an exponential decrease in the impedance 

magnitude. The inset magnifies the 10 kHz to 1.5 MHz regime where |Z| drops below 1 kΩ 

 

Of course, the boundaries at which the model must change are highly dependent on the 

device. Smaller capacitances, as well as series resistances, can push the parallel to series 

transition into higher frequencies. With a sufficiently low capacitance and Rs combination, the 

change may not even be noticed within the define frequency range; as is typically the case with 

Parallel SeriesBoth
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silicon cells. A well-known technique for monitoring model choice is to track the magnitude of 

the impedance (Figure 21(b)).119 The general guidelines which are typically used are: (i) the 

parallel approximation for |Z| > 10 kΩ, the series approximation for |Z| < 1 kΩ, and either for 1 

kΩ < |Z| < 10 kΩ. Figure 21(b) shows good agreement with these guidelines.  

 

Model failure examples: I next turn to the literature and some of my own data to 

highlight inconsistencies generated by improper model usage. These inconsistencies seem to 

have led and, in the future, may lead to incorrect data, misinterpreted conclusions or both. In a 

recent report by J. V. Li et al., capacitance techniques were used to simultaneously measure 

carrier density and mobility in organic semiconductors.59 Although I generally agree with their 

method, I find inconsistencies in the measured geometric capacitance and the conclusions 

directly drawn from it. In the report, P3HT only films were characterized by the CV method (-3.0 

V to +0.5 V) at different frequencies (100 Hz – 1 MHz). The authors found that at frequencies of 

10 kHz and above, the film did not exhibit a MS response. This indicates that 10 kHz is the 

boundary above which mobile charges as well as trap states cannot respond and only the 

geometric capacitance is measured. From this, one is left to draw the conclusion that CV and 

other capacitance measurements (CF, deep-level transient spectroscopy, etc.) should be 

conducted at frequencies lower than 10 kHz. Qualitatively, this conclusion seems implausible as 

the demarcation energy of 10 kHz is ca. 0.477 eV ( Eω = E – Ehomo =  kTln(ω0/ω)
120 with ω0 

estimated at 1x1012 s-1), which is nearly 0.1 eV above the Gaussian center of the deep trap 

profile in P3HT films.21,38 Thus, at 10 kHz, one would expect these lower lying trap states and 

mobile charges to respond.63 Further, our data does not support this 10 kHz conclusion as MS 
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behavior for frequencies as high as 1 MHz on P3HT only devices. As a possible explanation for 

this discrepancy, the differences between the series and parallel approximations for CV data 

between 100 Hz and 1 MHz is explored. As shown in Figure 22(a), the models give an indication 

of much different device behavior at 1 MHz on our cells, with the series approximation showing 

MS behavior and parallel showing only a dielectric response. Here, the impedance magnitude 

indicates that the series model is more accurate. Note that this particular P3HT device did not 

show low impedances (i.e. <1 kΩ) until ca. 300 kHz owing to a slightly smaller capacitance than 

that of the referenced work. As further evidence that the parallel parameters give an incorrect 

depiction of device behavior, I turn to the reverse bias region (-2 VDC). Here, the layer is fully 

depleted and it is clearly seen that the parallel model underestimates the geometric 

capacitance by ca. 250%. Thus, Figure 22 shows that, for a typical P3HT device, frequencies as 

high as 1 MHz may still be valid for capacitance spectroscopy, and the currently published 10 

kHz data is most likely the result of model misinterpretation. The exact uppermost usable 

frequency will be dependent on the material’s Fermi-level, and thus can change from device to 

device. P3HT doping has been reported in the range of 1015 – 1017 cm-3, from which the Fermi-

level can be estimated to sit at 0.36 eV above the valence band or lower. This corresponds to 

freeze out frequencies of ca. 900 kHz or higher. Even doping profiles as low as 1014 cm-3 still 

give a Fermi-level of ca. 0.42 eV or a ca. 100 kHz upper frequency. The above finding has further 

implications for the method of measuring capacitance to find active layer thickness. It has been 

noted that improper model employment can underestimate Cg by as much as 300%. As a result, 

thickness can be significantly overestimated if the model is not properly adjusted. 
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Figure 22: (a) capacitance versus voltage for P3HT only device at 100 kHz and 1 MHz. Calculated 

geometric capacitance is highlighted by the horizontal line. The differences in the geometric 

capacitance obtained by the models are shown within the circle. (b) Density of trap states 

versus demarcation energy for P3HT:PCBM 1:1 device. The arrow shows the shift in the 

Gaussian amplitude and central energy between the two models.   

 

Next, the determination of deep-trap density of states (tDOS) in organic cells is 

explored. This method, which is detailed elsewhere,38 combines CV with CF characterization to 

sweep through the bandgap and map defects states. As previously highlighted, the series model 

gives the best approximation for 1:1 BHJ based devices at higher frequencies (10 kHz to 2 MHz). 

(a)

(b)

Cg
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The demarcation energies of these higher frequencies range from 0.477 eV to 0.339 eV. One 

immediately notes that this is over the range of the reported Gaussian deep-defect profile.21,38 

By comparing these models in Figure 21(a), a large difference in slope is readily apparent. Thus, 

as highlighted in Figure 22 (b), if the improper model is employed, the tDOS magnitude and 

distribution center can be over- and under-estimated, respectively. Using the parallel 

approximation, Nt is overestimated by ca. 110% and the central energy to be underestimated 

by about 20 meV.  

 

 

Figure 23: capacitance versus frequency as a function of reverse bias for (a) the series model 

and (b) the parallel model. The arrows indicate the direction of increasing reverse bias. 

(a)

(b)
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Lastly, a 2008 report by G. Jarosz is investigated.121 In this report, the author casts doubts 

on MS analysis of organic planar heterojunction cells. Although the report in its entirety is not 

questioned, a single plot displaying C versus F as a function of reverse bias is reviewed. Here, 

the author correctly expects the measured frequency-dependent capacitance to decrease with 

an applied reverse bias. More generally stated, as the reverse bias is increased, the active-layer 

begins to deplete and the capacitance at all frequencies decreases to approach the geometric 

capacitance. The report, however, finds an increase in capacitance with reverse bias for 

frequencies less than ca. 400 Hz and draws doubts on MS analysis in their cells. Although I 

cannot state whether MS analysis is valid or not on Jarosz’s planar cells, it can be highlighted 

how improper model employment could cause one to incorrectly reach the same conclusion – 

even on P3HT:PCBM BHJ cells. Figure 23 shows 1:1 BHJ CF analysis as a function of applied DC 

reverse bias for both the series (Figure 23(a)) and parallel (Figure 23(b)) models. The series 

model closely represents the data of the aforementioned report. This artifact arises as a direct 

result of the series approximation. As frequency decreases, the capacitance impedance 

increases and the parallel portion of circuit Figure 19(a) dominates. By continuing to monitor 

the series portion, the true capacitance measurement is lost. The parallel model removes this 

artifact and gives the expected response. Hence, by monitoring only the series model, one 

might reach improper conclusions owing to inaccurate data. 
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3.1.4 Project conclusion 

Herein, the capacitance model choice was reviewed in an effort to improve capacitance 

measurements on organic PV cells. Although series versus parallel model selection may be a 

known issue, evidences in the literature that it is being overlooked within the organic PV 

community are found. Owing to higher series resistances and lower capacitance impedances, 

the parallel approximation cannot be indiscriminately used over the frequency range of 

interest. Most importantly, improper model employment can cause discrepancies in the 

geometric capacitance by as much as 300%, discrepancies in the tDOS by as much as 110%, and, 

more in general, misinterpreted conclusions. This work shows that while performing 

capacitance characterization, it is critical to monitor the impedance magnitude and 

correspondingly employ the appropriate capacitive circuit model.  
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4 CHAPTER IV: ON THE IDENTIFICATION OF DEEPER DEFECT LEVELS IN OPV DEVICES 

 

Now armed with a greater understanding of accurate capacitance measurements, such 

techniques can be leveraged to further study defect bands in OPV devices. This chapter 

presents a detailed application of the impedance spectroscopy characterization to reveal 

previously unknown deep defects in P3HT based devices. Further, this chapter gives general 

guidance as to how to apply to the broad impedance theory to organic solar cells. This work 

was published in the Journal of Applied Physics in 2013.122  

 

4.1.1 Project introduction and motivation  

As mentioned above, bandgap residing trap levels can significantly affect many of the 

parameters which have been identified as bottlenecks to OPV performance. Chapter II details 

the work to date on profiling such levels in P3HT films between the HOMO and ca. HOMO + 

0.45 eV. However, no report has profiled deeper towards the mid-gap, an energy regime which 

is expected to house a distribution of trap levels.  

 

In this chapter, using CF, CV and trap-free dark-current modeling, the presence of deeper 

defects in P3HT:PCBM OPVs are reported. The main band is revealed by low frequency (<1 Hz) 

CF, which is analyzed using the model of Cohen and Lang as well as that of Walter et al.92,93 This 

band is then confirmed by a point-by-point differential of high frequency CV, which in turn 

indicates a uniform doping profile. The total traps discovered via capacitance are well 

correlated to the total traps measured by dark current modeling, substantiating the 

measurements and assumptions. Lastly, a comparison of P3HT:PCBM based devices to pure 
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P3HT diodes with two different cathode interfaces shows the traps measured here are likely 

inherent to the polymer bulk. 

 

4.1.2 Theoretical background 

In P3HT based cells, the polymer becomes p-doped with exposure to oxygen or 

moisture10,11 and creates a Schottky-junction at the cathode,14,78,123 allowing for capacitance 

measurements to be leveraged. Figure 24a, which depicts the MS relation of a model OPV 

device for different AC frequencies, shows an example of such a case. As discussed above for 

amorphous and/or impure materials, a strong dependence on both frequency and direct 

current (DC) bias is seen. In the low forward\reverse bias region, an increase in the MS slope 

with increasing frequency is clearly present. This highlights the capacitive response of defect 

states as a function of the small-signal oscillation. As described above, the thermal emission 

rate of a trap state in a p-type semiconductor is quantified by,  

 

 

  
               

   

   
  (23) 

 

where NV is the valence band density of states, vth the thermal velocity, σp the capture cross-

section, Ea the trap activation energy, T the temperature, kB the Boltmann constant and where 

NVνthσp defines the attempt-to-escape frequency.62,81,93 Thus, the small-signal measurement 

inherently includes [or excludes] trap states as per the AC frequency.  
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This dynamic response is commonly explained in terms of a spatial abscissa, where a 

distance from the junction interface, xω, is defined as per the applied frequency where 

ωτp=1.93,95 Traps crossing the quasiFermi-level further from the junction (with ωτp≤1) can 

change their state and contribute to the depletion capacitance, while those closer cannot. 

Assuming a constant trap density of states (tDOS), the formalism of Cohen and Lang  and work 

of Mencaraglia et al. then shows the depletion capacitance to be defined by Cd= εA/(xω+LD), 

where LD  is the Debye length.93 96 The Debye length is defined by 

 

    
  

         
   

 

  (24) 

 

which is further related to the CF measurement through 

 

 
        

      
 

  

 
 

  

            (25) 

 

where ω is the applied angular frequency and ωT0 is the turn on angular frequency.94,96 Thus, an 

estimation of the tDOS [among other parameters] is readily obtained.  

 

Similarly, the AC response of trap states is commonly explained in terms of a 

demarcation energy, defined by,92,94,111 
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  (26) 

 

Traps below this demarcation (i.e. closer to the Fermi-level) can change their change state and 

contribute, while those above cannot. Through the formalism of Walter et al., a tDOS profile 

can then be found through the differential,38,62,92    

 

         
   

  

  

  

 

   
   (27) 

 

Of course, this formalism has already been more thoroughly discussed above. The Walter 

formalism is highlighted in Figure 24b, where the known deep-trap in P3HT based cells is 

reproduced.38 It is interesting to note that it is not until frequencies greater than 1 MHz that a 

significant portion of this deep-defect band is frozen or not responding. Thus, in the CV data of 

Figure 24a, as the frequency is swept higher, the measured N decreases from p+NT to approach 

p as the traps are progressively excluded – explaining the frequency dependence. 
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Figure 24: (a) Mott-Schottky form of CV measurements on P3HT:PC60BM BHJ cell. The arrow 

indicates increasing frequency. (b) Analysis of CF data via the Walter et al. interpretation 

showing the deep-defect Gaussian. Eν is shown on bottom x-axis and frequency (Hz) on top.   

 

The second artifact seen in Figure 24a is a change in the MS slope as per increasing reverse 

bias. Namely, at a given frequency between -5 and +1 VDC a straight line, as expected from the 

ideal MS treatment, is not noted. Instead, a rolling slope is clearly present. As mentioned 

above, this could be caused by a non-uniform doping profile, as interpreted by Dennler et al.14 

However, as stated by Li et al. and formalized by Kimerling, the change may also be due to the 

contribution of energetically deep(er) defect states.59,63 Neglecting non-uniform doping [for the 

(a)

(b)
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time being] and taking the Kimerling interpretation, let’s consider the reverse bias CV profile of 

Figure 24a to be representative of the inclusion of the deep-defect profile shown in Figure 24b. 

A simple quantification gives an interesting revelation. Figure 24b shows that at ca. Eν = 0.46 

eV, or just below 1 kHz, the known deep-defect is fully responding. However, in the MS plot of 

Figure 24a, at frequencies <1 kHz the slope still gives some change in increasing reverse-bias. 

This seems to be representative of yet unknown, deeper defects (ep<νAC) being pulled to the 

quasiFermi-level to contribute. This thought is developed in the subsequent sections using a 

more targeted application of the above-summarized CF and CV measurements. 

 

4.1.3 Experimental and photovoltaic performance 

OPV cells were fabricated from P3HT (Reike Metals, 50k MW, 90-94% regioiregularity, 

<0.04% Ni / < 0.02% Zn / < 0.04% Br) and PCBM (NANO C, Inc.). Bulk heterjunction mixtures of 

1:1 or 1:0 by weight (20-30 mg/ml) P3HT:PCBM were mixed with ortho-Dichlorobenze (Sigma-

Alrich) and stirred at 45 ºC for at least 12 hours. Indium tin oxide (ITO; Delta Technologies) 

substrates were treated by consecutive sonications in: (i) isopropyl/acetone (50:50 v/v), (ii) 

detergent/deionized water, (iii) ethanol/methanol (50:50 v/v), and (iv) deionized water. The 

substrates were then blown dry and treated with air plasma. A ca. 30nm 

poly(ethylenedioxythiophene): poly(styrenesulfonic acid) (HC Stark) film was spin-coated onto 

the treated substrates and the casted films were annealed at 120 ºC for 10 min. The blend 

solutions were then filtered via plastic-syringe (note, this is known to affect the solution’s 

wettability)13 and a 0.22 µm PTFE filter (Sigma-Aldrich). The active layer was then spun at 400 

to 600 rpm for 60 s onto the PEDOT covered substrates and slow-dried in a Petri dish. Lastly, a 
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ca. 1500 Å thick Al cathode was thermally evaporated at a rate < 5 Å/s under a 10-6 mBar 

vacuum.  

 

Capacitance measurements were taken using a PARSTAT 2273 in the dark, at room 

temperature and in open air. Four averages per data-point and a three second delay between 

successive measurements were used to increase data-quality. A small-signal amplitude of 10 to 

25 mV (rms) was used for linearity and the impedance magnitude (|Z|) was monitored to 

ensure proper model employment.114 CF data was taken at a 0 V DC bias. To rule out oxygen 

induced artifacts during the longer low frequency measurements, a set of measurements was 

also conducted in nitrogen atmosphere – no differences were found. Further, the 

measurements were always conducted as CV, CF, and repeat CV in order to ensure no 

differences in the oxygen induced doping were seen during the data collection time. 

 

Illuminated J-V data was generated at AM1.5 using an ELH quartzline lamp at 1 sun. The 

system was calibrated using a crystalline silicon photodiode coupled with a KG-5 filter. Table 5 

summarizes the photovoltaic performance plotted in Figure 25.  

 

Voc (V) Jsc (mA/cm
2
) FF (%) PCE (%) 

0.54 10.90 55.80 3.30 

 

Table 5: summary of photovoltaic performance parameters for a sample P3HT:PCBM device. 
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Figure 25: photovoltaic performance of the studied P3HT:PC60BM BHJ cells.  

 

4.1.4 Deeper defects: identification and characterization 

Low frequency capacitance measurements: as an initial step towards identifying and 

characterizing this suspected distribution, I probe deeper into the energy-gap with low 

frequency capacitance measurements. The CF measurement is valid between the Fermi-level 

and mid-gap,92,124 however, current CF data on P3HT:PCBM OPVs extends only to ca. 10 Hz (ca. 

578 meV). Thus, I probe deeper towards the mid-gap with frequencies nearing 10 mHz (ca. 756 

meV). Measurements at these frequencies proved difficult as the AC impedance becomes high 

and noise can dominate. To combat this, thicker devices (> 200 nm) were used. Thicker films 

seem counterintuitive as the geometric impedance is actually increased. However, the longer 

drying times of thicker films gives the phases more time to segregate across the vertical axis.125 

Thus, less shunt paths percolate, resulting in less leakage. Thicker devices have the added 

advantage of ensuring proper doping extraction from CV MS, which has recently been 

cautioned.98 Figure 26a shows the resulting CF data normalized to geometric capacitance.  
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Figure 26: (a) CF spectra normalized to geometric capacitance (ca. 1.10 nF) showing two 

dominate regions of increasing capacitance. Red, solid line shows polynomial fit. (b) Resulting 

tDOS energy spectra showing two Gaussian defect bands as per the Walter et al. model. The 

dashed line shows the constant DOS calculated with the spatial abscissa (SPA) interpretation. 

 

Initial information can be obtained through the derivation from the model of Cohen and 

Lang.96 An estimation of the Debye length and concentration of measured trap states is given 

by Equations (24) and (25). In order to compare with the Walter et al. model, the constant trap 

profile obtained from Equation (23) was integrated between 300 and 800 meV (simply taken to 

be a rectangle). These results are summarized in Table 6; average ± standard error of the mean 

(a)

(b)

Band 2

Band 1
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(SEM) for four representative devices is shown. The distribution can be further resolved using 

the model of Walter et al. Figure 26b shows the energy spectra calculated by Equation (27). 

Before solving, data was cleaned using a polynomial averaging (solid, red line in Figure 26a). 

The resolved bands were then fit using a Gaussian form, 

 

        
  

    
     

        
 

   
  (28) 

 

where NT is the concentration of traps, E0 the mean energy and σ the disorder parameter. Table 

6 summarizes the parameter extraction; the average ± SEM for four representative devices is 

shown.   

 

 
Cohen and Lang model Walter et al. model 

LD (nm) NT (cm
-3

) NT (cm
-3

) E0  (eV) σ (meV) 

Band 1 -- -- 1.70 ± 0.40 x10
16

 0.33 ± 0.01 42.3 ± 3.30 

Band 2 -- -- 0.60 ± 0.20 x10
16

 0.69 ± 0.02 48.2 ± 8.50 

Total 13.1 ± 2.30 3.12 ± 0.67 x10
16

 2.30 ± 0.60 x10
16

 -- -- 

 

Table 6: summary of calculated parameters from CF data; average ± SEM shown. 

 

Two distinct bands are seen in the resulting spectrum: one in the high (>1 kHz) 

frequencies and one in the low (<1 Hz) frequencies. The shallower, high-frequency band 

correlates well to the data presented in Figure 24 and FTSC (EoFTSC = 0.35 eV)75, CF (EoAS = 0.36 – 

0.38 eV) 21,38 and Poole-Frenkel conduction modeling (PFCM) (EoPFCM = 0.30 – 0.50 eV )76 data 
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presented in the literature. Any deviation in the mean energy stems from the choice of νo while 

deviations in concentration result from the growth-rate dependence.21  νo, the attempt-to-

escape frequency, is a characteristic parameter which represents the prefactor of trap 

emission. It is especially important for finding the exact depth of the measured defect-bands in 

the Water et al. model. Previous admittance spectroscopy reports have used a νo of 1012-1013 s-

1 as an estimation stemming from inorganic materials.21,38 However, a more recent report has 

called this value into question, citing an attempt-to-escape frequency of 33.42 s-1.79 The first 

(1012 -1013 s-1) is slightly higher than and the latter significantly lower than values of 107-109 s-1, 

which have been extracted from poly(p-phenylene vinylene (PPV) based organic cells.61,79-81 To 

comment on this, I use information from the freeze out frequencies and doping levels of our 

devices.  

 

First, high frequency CF data (Figure 26) is examined. It can be seen that, for this 

particular device, at ca. 800 kHz the freeze out condition is reached – which corresponds to the 

demarcation energy reaching the Fermi-level. Freeze out frequencies ranging from 800 kHz to 

1.5 MHz were seen in our devices. Next, high frequency CV with Mott-Schottky analysis is used 

to find the density of mobile charges and solve for EF – EP3HT Valance by: 

 

                     
  

 
    (29) 

 

Values for Nv ranging from 1019 to 1021 cm-3 have been used in the literature.126-128 Thus, νo is 

approximated to be between 1x109 and 5x1010 s-1 depending on the choice of Nv. In this report, 
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νo = 5x1010 s-1 will be used. A more accurate treatment of the attempt-to-escape frequency is 

given by:  

 

       , (30) 

 

where βp is the capture coefficient of the trap.92 Note that the parameter is dependent on 

temperature as well as the characteristics of the trap being probed.62 Thus, more in-depth work 

is needed to find the exact attempt-to-escape-frequency(ies). This will be revisited in the 

subsequent chapter. In the meantime, I expect the above to give a reasonable estimate for the 

work at hand. 

 

The deeper, low-frequency band represents a previously unknown defect distribution – 

as predicted by the above-discussed CV interpretation. This band has a mean energy of 0.68 eV 

above the highest occupied molecular orbital (HOMO), ca. 0.34 eV deeper in the gap than 

known Band 1. Although this deeper band is smaller in amplitude, it is still on the order of 

5x1016 cm-3 eV-1, indicating it may play a significant role in altering OPV performance. This is 

especially true considering the deeper an energetic defect resides, the more strongly it can trap 

carriers. In a disordered material, trap states can contribute to current through thermally 

activated tunneling and hopping.9 However, at sufficiently deep levels charge transfer is cut-off 

and the states are static.9 The strongly trapped charge may then act as a monomolecular 

recombination center, a charged point site or both. Good agreement in the total concentration 

of measured traps between the two models is clearly seen. No significant statistical difference 
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(p-value>0.05) was found in the displayed averages. To highlight reproducibility and variation, 

Figure 27 shows repetitions for the CF generated tDOS. 

 

 

Figure 27: repetitions of low-frequency CF measurements. The DOS spectra are shown. The 

parameters of IDs (a)-(d) are summarized in Table 7. 

 

Each device showed the distinct presence of two deep-defect bands, one in high 

frequencies and one in low frequencies. Table 7 summarizes the Gaussian fit parameters for 

each band. Thickness values were obtained by geometric capacitance measurements – the 

devices were depleted by a large reverse DC bias (≥ -5 VDC) and a high frequency (≥ 500 kHz) 

was used to ensure only a dielectric response. 

(a) (b)

(c) (d)
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ID Thick (nm) Band A (cm
-3 

eV
-1

) E0 (eV) σ (meV) 

(a) 300 
1 10.8 x10

16
 0.36 47.5 

2 2.99 x10
16

 0.73 41.0 

(b) 204 
1 24.0 x10

16
 0.30 48.2 

2 6.70 x10
16

 0.68 60.0 

(c) 266 
1 9.20 x10

16
 0.32 38.5 

2 3.00 x10
16

 0.68 41.0 

(d) 235 
1 18.8 x10

16
 0.33 35.2 

2 3.80 x10
16

 0.65 27.6 

 

Table 7: summary of Gaussian fit parameters for the tDOS plots of Figure 27. 

 

High frequency point-by-point CV: in order to test if the newly discovered deep-defect 

distribution accounts for the slope change in the lower frequency CV data, one might intuitively 

measure the MS profile at 10 mHz in search of a straight plot. This experiment, however, was 

dominated by noise, making it difficult to ascertain meaningful results. Thus, I next turn to a 

point-by-point differential of high frequency CV measurements in an attempt to make 

correlations between Equation (28) and the tDOS profile of Figure 26b.  
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Figure 28: (a) high frequency CV data shown in Mott-Schottky form. Red, solid line shows 

polynomial fit. (b) Measured N(x) versus W for CV of (a) for a high and moderate frequency. 

 

CV data taken at 800 kHz from -5 to +1 VDC is displayed in Figure 28a. The MS form 

shows the expected rolling slope. Figure 28b shows the calculated depth profile, which I believe 

is best represented by the Kimerling model of Equation (28). To be thorough, Cohen and Lang 

have also described this dynamic DC response and their interpretation has already been 

employed within the organic community.93,95 However, our data did not match that described 

in the cited work and better applicability of the Kimerling formalism was found. The highest 

possible frequency before complete freeze out was used to ensure case 2 of the Kimering 

theory was invoked and that ‹x›=Wd.62,63 

 

(a)

(b)
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In Figure 28b, a decrease followed by a minimum and gradual increase in N(x) is seen. 

The minimum point corresponds to a voltage very near Vbi, where the bands are nearly flat and, 

because a high frequency was employed, only p responds. At higher forward-bias, the depletion 

width reduces, carriers are injected and a chemical capacitance begins to dominate.89,98,129 At 

increasing reverse-bias, the depletion width is increased, bands are bent and the possible 

contributions of traps states are seen.  

 

To begin, let us neglect the possibility of a non-uniform doping profile and consider the 

Gaussian defects of Figure 26b as they are pulled to the quasiFermi-level to contribute to the 

CV measurement. Starting from near the flat-band condition, a sharp increase in N(x) would 

first be seen with increasing reverse bias. As the Gaussian center is passed, defect states are 

still included, but at a slower rate, causing an inflection in N(x). As the next Gaussian is pulled, a 

second inflection would be found, and so on. In Figure 28b, red arrows highlight those 

inflections which I expect correspond to dominate Gaussian distributions. By subtracting the 

values of N(x) at the inflections to the left and right of a suspected distribution, the total defects 

of that band is found. Assuming homogeneous doping, these values should correlate to those 

found by CF, while deviations may be indicative of a non-uniform doping profile. Indeed, good 

agreement between the magnitude of the CV distributions (Figure 28b red arrows) and the CF 

(Figure 26b) defect bands is found. For this particular cell, CV gave the Band 1 concentration to 

be 8.81x1015 cm-3 and Band 2 to be 3.67x1015 cm-3. This compares to CF values of 9.12x1015 cm-3 

(high frequency band) and 3.07x1015 cm-3 (low frequency band) respectfully.  Further, a lower 

frequency (1 kHz) analysis is also included in Fig. 3b. At 1 kHz the first defect distribution is 
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already responding and, in accordance with the above theory, the profile is pivoting upwards. 

The trend will limit towards a straight line (i.e. with a low enough measurement frequency) 

which represents the mobile charges plus total defect states.62 The pivot and expected straight-

line limit can be seen near 2.7x1016 cm-3 in this particular device. The difference between the 

1kHz profile and straight limit is about 3-4x1015 cm-3, the value of the low-frequency, deeper 

distribution not yet included in low-bias 1kHz measurement. This again supports the existence 

of a distribution deeper in the gap and, because the depth profile of inhomogeneous doping 

would be independent of frequency, further rules out the possibility of non-uniform doping. 

Repetitions for the high frequency CV measurement are displayed in Figure 29. For each ID (a)-

(d) the raw CV data is displayed in the left column, while the depth profiles are shown on the 

right. Table 8 summarizes the trap concentrations. 
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Figure 29: repetitions of high-frequency CV analysis from +1 to -5 VDC. CV data (left column) 

was solved by Equation (16) to give the profile on the right.  
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ID Frequency (kHz) Band NT (cm
-3

) 

(a) 800 
1 8.80x10

15
 

2 3.10x10
15

 

(b) 700 
1 1.50 x10

16
 

2 8.00 x10
15

 

(c) 700 
1 8.50 x10

15
 

2 5.90 x10
15

 

(d) 500 
1 1.40 x10

16
 

2 3.60 x10
15

 

 

Table 8: summary of band amplitudes for CV profiles of IDs (a)-(d) shown in Figure 29. 

 

4.1.5 Polymer only diode and dark current modeling 

To give indication as to the spatial location of these defects, a set of experiments was 

conducted to repeat the above measurements again on 1:1 P3HT:PCBM OPVs as well as 1:0 

P3HT only diodes with both Al and Ca\Al cathodes. Table 9 summarizes the results; average ± 

SEM is shown for three representative sets. Unpaired t-tests showed no significant statistical 

differences (p-value>0.05) in any 1:1 to 1:0 parameter comparison. This, coupled with data 

showing no difference in trap parameters between devices with an Al cathode and those with a 

Ca\Al cathode, strongly indicates the measured levels are belonging to the polymer bulk. 

Further, because of the prominent decrease in the MS slope with deeper reverse bias (i.e. 

increase in measured N), the traps are expected to be acceptor-like.61 
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 A (cm
-3

 ev
-1

) Eo (eV) σ (meV) 

1:1 Band 1 18.0 ± 2.50 x10
16

 0.31 ± 0.004 40.3 ± 3.50 

1:0 Band 1 15.0 ± 2.80 x10
16

 0.32 ± 0.005 33.3 ± 1.10 

1:1 Band 2 3.10 ± 0.30 x10
16

 0.66 ± 0.003 41.1 ± 7.40 

1:0 Band 2 3.30 ± 0.40 x10
16

 0.65 ± 0.007 44.7 ± 1.60 

 p (cm
-3

) NT Capacitance (cm
-3

) NT Dark IV (cm
-3

) 

1:1 3.30 ± 1.20 x10
16

 4.90 ± 1.10 x10
16

 n/a 

1:0 2.30 ± 0.84 x10
16

 4.00 ± 1.30 x10
16

 4.70 ± 0.53 x10
16

 

 

Table 9: summary of tDOS characteristic parameters for 1:1 and 1:0 devices. 

 

As seen in Table 9, dark-current modeling measurements were also conducted to 

generally verify the capacitance results. The dark current of a basic polymer diode is often 

described as space charge limited.55,130,131 Figure 30 shows the dark IV of a representative 

ITO\P3HT\Al diode. In the ln-ln plot, three main regions prevail: (i) ohmic in low voltages, (ii) 

trap controlled in intermediate voltages and (iii) trap free at high voltages.55,130 The high voltage 

region is governed by JTF = 9/8ϵµV2/L3
 (solid line in Figure 30), where J α V2

 (Figure 30 insert).55 

By examining the voltage at which current switches from trap controlled to trap free (VTF), the 

total defect states can be estimated by NT=2ϵsVTFL/(qt2).132 The concentration estimated by dark 

IV agrees well with that determined via capacitance, substantiating the general capacitance 

measurement.  
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Figure 30: dark current versus voltage for P3HT diode. The solid line represent the trap-free 

model (µ=2x10-4 cm2/V-s). The insert shows dark current versus voltage squared. 

 

4.1.6 Project conclusion 

Further elucidations into the capacitive behavior of P3HT:PCBM based photovoltaic cells 

were presented. A background of CV/CF analysis was given and evidence indicating the 

presence of a yet unknown deep-defect distribution was highlighted. Low frequency CF 

measurements were then undertaken to identify and characterize this deep band. The model of 

Cohen and Lang was used to determine the Debye length as well as the measured trap 

concentration. The formalism of Walter et al. gave good corroboration to the total 

concentration and further resolved the tDOS energy spectrum – directly revealing the presence 

of the predicted distribution. This new defect was then reproduced using the Kimerling 

interpretation of high-frequency CV measurements. Good correlation between CV and CF data 

confirms the presence of the deep defect and, especially when coupled with dark-current 

modeling data, shows no spatial variations in the doping profile. A comparison of PCBM 
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containing devices to that of polymer only diodes with different cathodes strongly indicates the 

measured defects to be acceptor-like traps belonging to the polymer bulk. The findings 

presented here are important for the understanding and optimization of organic solar cells and 

the presented methods are suspected to be generally applicable to other OPV material sets. 
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5 CHAPTER V: THE DYNAMICS OF TRAP EMISSION IN OPV DEVICES 

 

In the previous chapter’s work, it became clear that the prefactor of trap emission – also 

referred to as ‘the attempt-to-escape frequency’ – is a critical parameter needed if one is to 

accurately describe the dynamics of trap occupancy and bandgap tDOS. This chapter details 

temperature dependent capacitance versus frequency measurements which were undertaken 

to characterization this prefactor in OPV devices. Several polymer systems will be discussed. At 

the time of this dissertation submission, the following work is currently being prepared for 

publication.  

 

5.1.1 Project introduction and motivation 

The attempt-to-escape frequency is a characteristic semiconductor parameter which helps 

to define the kinetics of trap occupancy. This parameter is enumerated in inverse seconds (or 

rad/s) and gives the maximum rate of change for trap emission cycles. The parameter has been 

briefly discussed above and, in reference to capacitance based measurements, it is clear that it 

must be known if one is to accurately determine the exact energetic location(s) of the 

measured traps. Expanding further, one finds the attempt-to-escape frequency is also at the 

heart of any measurement or model which employs detrapping dynamics.  

 

Of course, this prefactor is needed for capacitance based measurements – both 

admittance spectroscopy as well as deep-level transient spectroscopy.61,92 The parameter also 
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finds employment in charge hoping models. For example, the Marcus theory of charge transfer 

is often applied to describe the transfer rate between two organic sites (i to j): 133 

 

     
   

 

 
 

 

   
      

         

    
   (31) 

 

The Miller-Abraham rate equation is then used to determine the charge-carrier tunneling rate 

for phonon-assisted hopping: 134,135  

 

                    
                

   
    (32) 

 

which is commonly simplified to a functional form ν=ν0exp[-2άr].136,137 It is quite obvious that ν0 

must be well known if this type of model is to be accurately applied. The attempt-to-escape 

frequency is also needed for the Braun model for the dissociation of charge transfer states 

(Equation (33)), which is commonly applied to OPV devices. 31,138,139 

 

   
       

  
  

     

           
  
  

     
  (33) 

 

Several other derived equations employing this parameter can also be found. For example,  the 

zero field, infinite temperature limit mobility, 136,140 
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   (34) 

 

or the generation-recombination based reverse bias saturation current,31  

 

                 
 

  
   (35) 

 

The attempt-to-escape frequency also finds itself in TSC  based measuremtns.24,75 Clearly, the 

parameter has a wide range of employment and its accurate characterization is essential if 

trapping dynamics are to be properly described.  

 

Though the attempt-to-escape frequency is an important parameter, little work has been 

done to universally quantify it in OPV devices. To date, a majority of studies employing this 

parameter have borrowed values (1012–1014 s-1) from the inorganic literature,13,21,35,38,136,140,141 

or simply left the parameter as an unknown.86 Few works have actually measured ν0. As 

mentioned above, this parameter has been investigated in PPV based solar cells and Schottky 

diodes, both finding values between 107 and 108 s-1.61,80 A single report has found the attempt-

to-escape frequency in Pentacene thin-films to be 5x1012 s-1 and another has found 105 s-1 for 

Sexithiophene based transistors.142,143 As mentioned in Chapter I, a more recent report has 

studied the attempt-to-escape frequency in P3HT-fullerene photovoltaic devices, with a 

surprising result – 33.4 s-1.79 Clearly a huge range of values are currently being employed – 101 

to 1014 Hz, indicating each organic material may have a unique value or there is some ambiguity 
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in the measurement. Thus, I aim to revisit the prefactor in P3HT based devices and extend to 

include the results for the newer, higher efficiency OPV polymers.   

 

5.1.2 Theoretical background  

A theoretical understanding of the attempt-to-escape frequency is readily obtained by 

considering the thermal release rate of charges trapped within a semiconductor bandgap. 

Neglecting degeneracy, hole emission is defined by Equation (18). Clearly, this is an Arrhenius 

equation in which the emission rate is heavily dependent on the trap depth (activation energy), 

the sample temperature and the pre-exponential factor - Nc〈Vth〉σn. It is this prefactor that is 

commonly known as ‘the attempt-to-escape frequency’ (ν0).92,93,111 Linearizing Equation (18) 

yields,  

 

         
  

   
          (36) 

 

where a classic Arrhenius plot of the ln(en) versus 1/T gives a straight line with a slope that 

defines the trap activation energy and an intercept that defines the attempt-to-escape 

frequency.92 Thus, by monitoring the change in trap emission with a change in sample 

temperature, the attempt-to-escape frequency can be obtained. This treatment assumes the 

pre-exponential factor itself to be independent of temperature. However, Nc is known to vary   

T3/2 while 〈Vth〉 varies   T1/2 – giving an inherent temperature dependence to ν0.62 To account 

for this, the prefactor is sometimes written as ‘ϒT2’ where ϒ = Nc〈Vth〉σnT-2 and then the ln(en/T2) 

will be plotted versus 1/T to determine its value.62,81 Of course, the T2 term is dominated by T 
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term within the exponential and a large difference in the calculated attempt-to-escape 

frequency is typically not seen.92 Thus, this temperature dependence is often neglected. 

Nonetheless, the results will be evaluated both ways herein. 

 

The change in trap emission with a change in sample temperature can be readily tracked 

through capacitance measurements. Such measurements have been vastly discussed above. 

Simply put, as the frequency is swept from high (few or no bandgap states responding) to low 

(most or all bandgap states responding) ‘steps’ in the capacitance will be seen. Corresponding 

peaks in the differential –FdC/dF are then obtained and will display an Arrhenius behavior with 

changing temperature.62,92 Because of the inherent demarcation of the applied AC signal, the 

frequency of these differential peaks represents the emission rate of the responding band. 

Thus, by plotting the frequency at which the peak occurs versus 1/T, the attempt-to-escape 

frequency can be readily found through Equation (36) and the capture cross section calculated 

via σn = νo/Nc〈Vth〉.
62,92 The subsequent sections detail the application of this theory to several 

polymer-based OPV devices.  

 

5.1.3 Experimental and photovoltaic performance 

Temperature dependent capacitance versus frequency (TCF) measurements were carried 

out on the custom built setup pictured in Figure 31. Three different LCRs were explored to 

ensure high data quality. (i) A QuadTech 7600 (10 HZ – 2 MHz; 0.05% basic accuracy), (ii) a 

HIOKI IM3533-01 (1 mHz – 200 kHZ; 0.05% basic accuracy) and (ii) a PARSTAT 2273 (10 μHz to 1 

MHz; <0.75% basic accuracy). Though the LCRs have a rated measurement range as stated, the 
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usable range was often limited by device under test. Thus, data at the extremes – high 

frequency data where possible inductance effects were seen and low frequency data where 

leakage causes high dissipation values (D>1; though D values as high 10 are typically 

acceptable62,110) – were neglected. A continuous flow liquid nitrogen cryostat, controlled by a 

Lakeshore 331 temperature controller, was used to vary the sample temperature between 100 

and 400 K. Two platinum resistance temperature detectors (RTDs) contained within the 

cryostat head and one platinum RTD mounted on the sample surface were used to accurately 

track the cell temperature. The right hand panel of Figure 31 shows an OPV devices mounted 

for test. The sample sits directly atop the copper cryostat head. Cryogenic rated grease, which 

solidifies at low temperatures, was used to improve thermal conductivity between the head 

and sample substrate. The surface mounted RTD is clearly seen on the right. A simple wire 

probe, which is mimicked by the RTD to ensure an accurate temperature measurement, is 

connected to the aluminum cathode. The probe wires are wrapped around the side of the cryo-

head and varnished in place to ensure they cooled to the setpoint temperature. A silver, clamp-

like probe makes connection to the ITO anode and, again, the connecting wires are wrapped 

and varnished to the cryo-head.  
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Figure 31: experiment setup for temperature dependent capacitance-frequency 

measurements. 

 

The TCF system was benchmarked with hydrogenated amorphous silicon (a-Si:H) solar 

cells, which are well known to have an attempt-to-escape frequency in the range of 1x1011-

1x1013 Hz.113,144-146 Sample calibration data from the system is shown in Figure 32. The average 

measured attempt-to-escape frequency was found to be 1.6x1012 Hz – well within the expected 

range. This shows the validity of the experimental setup and the results presented herein. 

 

Continuous flow LN2

LCRs

Vacuum pump

Pico-meter
SMU
Temperature controller

DUT chamber

Cryostat head

RTD sensor

Vacuum chamber

Cryogenic grease

Cryogenic varnish



www.manaraa.com

110 
 

z 

Figure 32: (a) capacitance versus frequency as a function of temperature for a sample a-Si:H 

solar device. The red arrows indicate the Arrhenius shift of the trap states with lowering 

temperatures. (b) –F dC/dF differential. Arrows indicate emission peaks. (c) Arrhenius plot of 

the –F dC/dF peak frequencies versus 1/T.  

 

(a)

(c)

(b)
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Three different polymer based systems were tested: (i) P3HT, (ii) PTB7 and (iii) PCDTBT. 

The P3HT based cells were fabricated as discussed in section 4.1.3. Photovoltaic activity 

(illuminated J-V) was tested at a simulated AM1.5 using an ELH quartzline lamp. The system was 

calibrated using a crystalline silicon photodiode coupled with a KG-5 filter. Table 10 summarizes 

the photovoltaic performance plotted in Figure 33 (both before and after the cryogenic 

experiment is shown). As will be discussed in the subsequent section, it was necessary to 

stabilize the P3HT based cells to the vacuum environment. This was done by either a short (<10 

min) 375 K anneal or a long (>20 Hr) 325 K anneal. JV data for both stabilization methods is 

shown in Figure 33. It should be noted that after means not only after the thermal stabilization 

but also after the cryogenic experiment. Interestingly, the longer, 325 K anneals produced 

better photovoltaic performance. The reason for this is not yet known, but I suspect it may be 

related to high diffusion of the aluminum at the higher temperature anneal. Studies are 

currently underway to explain this difference.  

 

 Voc (V) Jsc (mA/cm
2
) FF (%) PCE (%) 

Before (325K) 0.55 10.1 44.0 2.40 

After (325K) 0.60 11.5 46.0 3.20 

Before (375K) 0.55 10.1 45.0 2.50 

After (375K 0.59 10.2 48.5 2.90 

 

Table 10: summary of photovoltaic performance parameters for a sample P3HT:PCBM device. 
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Figure 33: illuminated JV characteristics for P3HT:PC60BM based solar cell both before and after 

the TCF experiment. 

 

PTB7 devices were fabricated as follows. Bulk heterojunction mixtures of 1:1.5 by 

weight (1 0mg/ml) PTB7 (1-material) to PC70BM (NANO C, Inc.) were mixed with ortho-

Dichlorobenze (97%):1,8-Diiodooctane (3%)  and stirred at 45ºC for at least 12 hours. Indium tin 

oxide (ITO; Delta Technologies) substrates were treated by consecutive sonications in: (i) 

isopropyl/acetone (50:50 v/v), (ii) detergent/deionized water, (iii) ethanol/methanol (50:50 

v/v), and (iv) deionized water. The substrates were then blown dry and treated with air plasma. 

A ca. 40nm poly(ethylenedioxythiophene): poly(styrenesulfonic acid) (HC Stark) film was spin-

coated onto the treated substrates and the casted films were annealed at 150 ºC for 30 min. 

The blend solutions were then filtered via a non-lubricated plastic syringe and a 0.22 µm PTFE 

filter. The active layer was then spun at 1,000 rpm for 60 s onto the PEDOT covered substrates 

and slow-dried in a Petri dish. Lastly, a ca. 20 nm/100 nm thick Ca/Al cathode was thermally 

evaporated at a rate < 10 Å/s under a 10-6 mBar vacuum. The photovoltaic performance is 

shown in Figure 34 and summarized by Table 11. These devices did not need to be stabilized to 
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the vacuum environment; hence only one set of data before and after the cryogenic 

experiment is shown.  

 

 Voc (V) Jsc (mA/cm
2
) FF (%) PCE (%) 

Before 0.77 18.1 66.0 9.10% 

After 0.77 18.0 66.2 9.20% 

 

Table 11: summary of photovoltaic performance parameters for a sample PTB7:PC70BM device. 

 

 

Figure 34: illuminated JV characteristics for PTB7:PC70BM based solar cells both before and 

after the TCF experiment. 

 

PCDTBT devices were fabricated as follows. Bulk heterojunction mixtures of 1:4 by weight (7 

mg/ml) PCDTBT (1-material) to PC70BM (NANO C, Inc.) were mixed with ortho-Dichlorobenze 

and stirred at 45 ºC for at least 12 hours. Indium tin oxide (ITO; Delta Technologies) substrates 

were treated by consecutive sonications in: (i) isopropyl/acetone (50:50 v/v), (ii) 

detergent/deionized water, (iii) ethanol/methanol (50:50 v/v), and (iv) deionized water. The 
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substrates were then blown dry and treated with air plasma. A ca. 40nm 

poly(ethylenedioxythiophene): poly(styrenesulfonic acid) (HC Stark) film was spin-coated onto 

the treated substrates and the casted films were annealed at 150 ºC for 30 min. The blend 

solutions were then filtered via a non-lubricated plastic syringe (as to not introduction silicone 

contamination)13 and a 0.22 µm PTFE filter. The active layer was then spun at 1,000 rpm for 60 s 

onto the PEDOT covered substrates and slow-dried in a Petri dish. Lastly, a ca. 20 nm/100 nm 

thick Ca/Al cathode was thermally evaporated at a rate < 10 Å/s under a 10-6 mBar vacuum. The 

photovoltaic performance is shown in Figure 35 and summarized by Table 12.  These devices 

did not need to be stabilized to the vacuum environment; hence only one set of data is shown. 

 

 Voc (V) Jsc (mA/cm
2
) FF (%) PCE (%) 

Before 0.84 10.0 36.1 3.00 

After 0.83 9.70 37.4 3.10 

 

Table 12: summary of photovoltaic performance parameters for a sample PCDTBT:PC70BM 

device 
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Figure 35: illuminated JV characteristics for PCDTBT:PC70BM based solar cells both before and 

after the TCF experiment. 

 

5.1.4 The prefactor of trap emission in OPV devices 

To begin, let us look at the results for P3HT:PCBM based OPV devices. As mentioned 

above, these devices needed to be ‘stabilized’ to the vacuum environment of the cryostat. The 

need for this stabilization was found empirically over the course of the long (4-6 hours) TCF 

measurements. Data taken at 300 K before the cold temperature experiments would not line 

up to 300 K data taken after. This change was at first attributed to a long photocapacitance 

decay, an environmental change throughout the course of the experiment or a physical, 

permanent change in the device at cold temperatures. To sort out this stabilization issue, the 

capacitance of the OPV devices contained within cryostat vacuum was monitored as a function 

of time.  
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Figure 36: effects of the vacuum environment on the capacitance of a P3HT:PC60BM OPV. 

Device is in the dark at 300 K and data was taken at 10 kHz. 

 

Figure 36 shows one such example at 300 K/10 kHz for 50+ hours. As shown, a large 

drop in the capacitance is seen over the course of the experiment. Clearly, this change will 

cause issues with the validity of successive CF measurements and makes the accurate 

characterization of the attempt-to-escape frequency extremely difficult, if not impossible. At 

300K, the capacitance was not stable even after 50 hours. As such, 325 K was then applied to 

the device. An initial increase is first seen – corresponding to an increase in the response of trap 

states at the measurement frequency – followed by a rapid decrease in the capacitance. To 

determine if the decrease was caused by the release of deeply stored photocharge, light was 

then shined at 300 K and the sample subsequently  returned to the a dark vacuum at 325 K. As 

expected, a jump in the capacitance was noted, followed by a quick decrease. However, this 

increase in the capacitance did not reach the same value as the light application at 0 hrs – 

indicating there is another mechanism which caused the dramatic decay of the capacitance 

over the 61 hour experiment. Of course, the sample encountered no low temperatures during 

this measurement, leaving only the possibility of environmental change.  

Ambient light to dark 
vacuum @300K

Dark vacuum @300K Apply 325K

Dark vacuum 
@325K

Shine light 
@300K

Dark vacuum @325K
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It is known that P3HT films de-dope when contained within a vacuum43 (likely, any 

oxygen deficient environment). This de-doping phenomenon is attributed to the desorption of 

oxygen and is expected to occur in the timeframe of weeks at 300 K to just a matter of minutes 

at higher temperatures (e.g. 370 K).43 To test this likely explanation of the capacitance-time 

data, the capacitance of a P3HT device through the application of 375 K within the cryo vaccum 

was then monitored and CV doping data – remembering that oxygen induces a p-type doping 

on these devices – was taken before and after (Figure 37). 

 

 

Figure 37: (left hand) effects of 375 K stabilization on the capacitance of a P3HT:PC60BM OPV in 

the cryo vacuum. Data taken at 10 kHz. (right hand) Mott-Schottky representation of CV data 

taken before and after the thermal annealing (TA) treatment. Data taken at 200 kHz. 

 

As can be seen, the 375 K treatment brought about a rapid decrease in the device 

capacitance in just a matter of minutes – the drop larger than both the 300 K and 325 K 

treatments. After returning to 300 K, the capacitance became very stable and remained so for 

Apply 375K

Apply 300K
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the course of the TCF experiment. CV data taken before and after the vacuum heat treatment is 

shown in the right hand panel of Figure 37. A large decrease in the measured free charge 

carriers was found, from 3.0x1016 cm-3 before to 7.0x1015 cm-3
 after the thermal treatment. This 

readily supports the notion of oxygen desorption and, thereby, the removal of the related 

defects. As such, all P3HT based devices were stabilized at either 375 K (10 min) or 325 K (20  

hrs) before the TCF experiment.   
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Figure 38: (a) capacitance versus frequency as a function of temperature for a sample 

P3HT:PC60BM solar device. The red arrow indicates the Arrhenius shift of the trap states with 

lowering temperatures. (b) –F dC/dF differential. Arrows indicate emission peaks. (c) Arrhenius 

plot of the –F dC/dF peak frequencies versus 1/T. 

(a)

(b)

(c)
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Figure 38a shows sample TCF for P3HT:PC60BM based OPVs.  A clear shift in the 

capacitance is seen with decreasing temperatures. At low enough temperatures (<200 K), the 

geometric capacitance appears as the freezeout condition is reached in the higher frequencies. 

Extending from this geometric capacitance, a sharp step in the capacitance from ca. 1.75 nF to 

ca. 2.7 5nF can be seen. As such, a peak in the –FdC/dF differential is found in Figure 38b and 

shifts to lower frequencies with lower temperatures. The frequencies at which these peaks 

occur are plotted versus 1/T in Figure 38c. A straight line is revealed by the Arrhenius plot, 

yielding an attempt-to-escape frequency of 1.0x109 Hz and an activation energy of 210 meV.  

 

 

Figure 39: tDOS profile per temperature for a sample P3HT:PC60BM OPV as calculated by the 

Walter et. al. model. (a) Attempt-to-escape frequency of 1.0x109 Hz. (b) Attempt-to-escape 

frequency of 1.0x107 Hz. (c) Attempt-to-escape frequency of 1.0x1011 Hz. 

(a)

(c)(b)
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Figure 39 shows the corresponding tDOS profile as calculated by the Walter et al. formalism for 

different sample temperatures. The profile is in agreement with the data detailed in Chapter IV 

– with the energy shift corresponding to the newly measured attempt-to-escape frequency. 

Clearly, the new attempt-to-escape frequency gives good overlap in the tDOS profile of 

individual temperatures (Figure 39a), while a prefactor two orders of magnitude lower (Figure 

39b) or higher (Figure 39c) skews the temperature results. A dominant band at 200 meV (as 

predicted by the Arrehenius plot) can be seen. In the previous chapter, this first step was 

referred to as a deep defect band, however, this temperature data indicates this band is better 

described as the free carrier response band – a step in capacitance from Cd = εsεoA/t to Cd = 

εsεoA/W.62 This response band is expected to have a thermal activation energy which 

corresponds to the Fermi-level. The TCF measured 210 meV corresponds well to the Fermi-level 

(220 meV) calculated from the CV measured doping (2.0x1015 cm-3; assuming Nv=1.0x1019 cm-3). 

Moving higher in energy, deeper states are revealed and the beginnings of the second Gaussian 

can be seen. Careful analysis of the temperature data between 0.25 eV and 0.35 eV shows a 

lower attempt-to-escape frequency – around 1.0x108
 Hz. This indicates that the carrier 

response band and deeper defects do not share the same prefactor. Table 13 summarizes the 

experimental data. One notes the reduction of measured traps in this device compared to that 

of the previous chapter. This is likely the result of the thermal stabilization, which will remove 

both oxygen and structural based defects.  
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Figure 40: (a) capacitance (normalized) versus time for P3HT and PTB7 based devices within the 

cryo vacuum at 325 K. (b) Capacitance versus frequency as a function of temperature for a 

sample PTB7:PC70BM solar device. The red arrows indicate the Arrhenius shift of the trap states 

with lowering temperatures. (c) –F dC/dF differential. Arrows indicate emission peaks. (d) 

Arrhenius plot of the –F dC/dF peak frequencies versus 1/T. 

 

Figure 40 shows similar data for PTB7:PC70BM based devices. Interestingly, these 

devices did not need to be stabilized to the vacuum environment. Figure 40a shows a 

comparison of the capacitance versus time (devices within the vacuum environment at 325K) 

for P3HT and PTB7 OPVs. No decrease in the PTB7 capacitance or change in the free carrier 

density was noted. Figure 40b shows sample TCF data for these devices; a clear shift in the 

(b)

(c) (d)

(a)
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capacitance with decreasing temperature is seen. Again, a somewhat sharp step followed by a 

slower increase in the capacitance is displayed. Figure 40c shows the corresponding –FdC/dF 

differential and Figure 40d the Arrhenius plot of these peaks. An attempt-to-escape frequency 

of 2.0x108
 Hz with an activation energy of 170 meV was found. Because this capacitance step 

starts at the geometric value, it again likely corresponds to the carrier response band. The TCF 

measured activation energy (170 meV) closely matches the Fermi-level (160 meV) calculated 

from the CV measured doping (2.0x1016 cm-3). Figure 41 shows the corresponding tDOS. A clear 

Gaussian at about 170 meV leads into deeper states which appear to be increasing slightly with 

increasing energy. Careful analysis of the temperature data between 0.15 eV and 0.25 eV shows 

a slightly lower prefactor for the deeper states; about 5.0x107 Hz. Table 13 summarizes the 

experimental data.   

 

 

Figure 41: tDOS profile per temperature for a sample PTB7:PC70BM OPV as calculated by the 

Walter et. al. model. 
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Figure 42 shows the experimental data for PCDTBT:PC70BM based devices. Again, the 

devices did not need to be stabilized to the vacuum environment. Figure 42a shows a 

comparison of the capacitance versus time (devices with the vacuum environment at 300K) for 

P3HT, PTB7 and PCDTBT OPVs. No decrease in the PCDTBT (as well as the PTB7) device 

capacitance was seen over the 17+ hour experiment. Figure 42b shows the TCF data for a 

sample PCDTBT based device. A shift in the capacitance with temperature is seen. The 

capacitance increase is mainly broad; however, a subtle step can be seen near 5.8 to 5.9 nF 

(highlighted by the red arrow).  As such, a weak peak in the –FdC/dF differential can be seen 

(Figure 42c). The peak frequencies are plotted versus 1/T in Figure 42d, revealing an attempt-

to-escape frequency of 6.0x109
 Hz and an activation of 358 meV. Clearly, this capacitance step 

does not originate at the geometric capacitance, indicating this is a deep defect band – shifting 

the capacitance to Cd = εsεoA/<x>.62  

 



www.manaraa.com

125 
 

 

Figure 42: (a) capacitance (normalized) versus time for P3HT, PTB7 and PCDTBT based devices 

within the cryo vacuum at 300 K. (b) Capacitance versus frequency as a function of temperature 

for a sample PCDTBT:PC70BM solar device. The red arrow indicates the Arrhenius shift of a trap 

band with lowering temperatures. (c) –F dC/dF differential. Arrows indicate emission peaks. (d) 

Arrhenius plot of the –F dC/dF peak frequencies versus 1/T. 

 

Figure 43 shows the corresponding tDOS. The deep Gaussian defect is revealed around 

360 meV while what may be the carrier response band begins to appear at lower energies. 

Doping in the range of 1.0x1016 cm-3 was found via CV measurements, putting the Fermi-level at 

ca. 180 meV. Table 13 summarizes the experimental data.   

 

(a) (b)

(c) (d)
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Figure 43: tDOS profile per temperature for a sample PCDTBT:PC70BM OPV as calculated by the 

Walter et. al. model. 

 

 ν0 (Hz) ϒ (Hz/K2) Ea (meV) σ (cm2)* 

P3HT:PC60BM 1.20x109 5.30x103 210 1.20x10-17 

PTB7:PC70BM 2.30x108 7.20x102 190 2.30x10-18 

PCDTBT:PC70BM 4.50x109 7.90x103 358 4.50x10-17 

 

Table 13: summary of TCF measured data. *〈Vth〉 = 107 cm/sec and NV = 1019 cm-3 was assumed 

for these calculations. 

 

5.1.5 Project conclusion 

Herein the pre-exponential factor of trap emission in organic photovoltaic devices was 

investigated. This prefactor – often referred to as the attempt-to-escape frequency – is 

essential if one is to accurately describe detrapping dynamics, making it an important 

parameter in a wide range of measurements and models. This characteristic parameter is 
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readily obtained through temperature dependent capacitance-frequency measurements. Three 

different polymer systems were studied: namely, (i) P3HT:PC60BM, (ii) PTB7:PC70BM and (iii) 

PCDTBT:PC70BM based OPVs. Each was found to have an attempt-to-escape frequency in the 

range of 108
 to 1010

 Hz, yielding a capture cross section in the range of 10-16 cm2 to 10-18 cm2. 

Further, using the Walter et al. interpretation of the TCF data, the deep trap profiles of these 

polymer devices have been presented. Each polymer showed carrier response band at lower 

temperatures, leading into deep defects at higher energies. In P3HT a brief area of constant 

DOS trailing to a sharp Gaussian was seen. PTB7 showed a nearly constant tDOS, with only a 

slight rise towards the deeper energies. PCDTBT showed a clear, complete Gaussian. The 

measured prefactors correlate well with that measured for PPV based devices.61,80 This 

similarity in the measured attempt-to-escape frequencies and, thereby, the capture cross 

sections indicates that the trapping mechanisms in these polymers are likely similar.  
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6 CHAPTER VI: CONCLUSION 

6.1 Synopsis 

In any microelectronic device, fundamental physical parameters must be well understood 

for successful electronic optimization. One such prominent parameter is energetic trap states, 

which are well-known to plague amorphous or otherwise impure semiconducting materials. 

Organic semiconductors are no strangers to such states and their electronic properties are 

evidently tied to these defects. This report discussed the identification and characterization of 

bandgap residing trap levels in organic photovoltaic devices. A compilation of select studies to 

date was given and an overview of the author’s work has been detailed. 

 

Within the community, several techniques have been leveraged to study these mid-gap 

states. Atop this list are optical (PSD, UV-Vis.), capacitance (CV, CF, DLTS) and current (TSC, SCL 

modeling, Poole-Frenkel modeling) measurements and each has provided important pieces to 

the overall picture. Organic photovoltaic materials have been depicted as disordered 

semiconductors with a seemingly continuous distribution of both energetically shallow and 

deep trap bands. Upon blending these pure materials to create the modern day bulk 

heterojunction, energetic disorder increases and new trap bands appear. These states have 

been shown to stem from both intrinsic (e.g. structural disorder) and extrinsic (e.g. oxygen, 

synthesis contaminates) sources and it is quite clear that such states can have profound effects 

on, if not completely control, the electronic properties and long term stability of OPV devices. 

Several works highlighting the drastic effects trap states can have on OPV performance have 

evidently shown this – citing enhanced trap-assisted recombination, Fermi-level pinning, space-
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charge effects and the like. Though these mid-gap traps have a large negative impact, it should 

also be remembered that they can give an advantageous inherent doping, improving 

conductivity and interfacial electric fields. Evidently, continued progress in understanding the 

nature, sources, affects and mitigation of the defects in both current and future materials will 

be crucial to the optimization of this promising technology.  

 

The primary work of this dissertation has been to further the current body of knowledge on 

the identification and characterization of defect states in OPV devices. Capacitance techniques 

were heavily employed herein. As such, the accurate capacitance characterization of OPV 

devices was first visited. It was found that, owing to thinner films and larger series resistance, 

the series parameters could not be neglected in the typical frequency range of interest or 

significant errors and misinterpretations were introduced. Deeper, unknown defects were then 

identified using low frequency capacitance measurements coupled with a point by point 

differential of high frequency CV data. The defects remain important as it is those states closer 

to the midgap which more efficiently contribute to recombination and can be detrimental to 

device performance. More generally, the presented technique gives a generic overview of the 

capacitance response of OPV devices – enabling others to better study defects in future, higher 

efficiency devices. Lastly, the pre-exponential factor of trap emission was studied. This 

parameter is essential if detrapping dynamics are to be properly described – important, among 

other things, for the CF theory applied herein. This similarity in the measured attempt-to-

escape frequencies and, thereby, the capture cross sections indicates that the trapping 

mechanisms in these polymers are likely similar.     
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6.2 Outlook towards future work 

This section looks to give some guidance as to how to build upon the work presented 

herein. Of course, the primary goal of the identification and characterization of energetic defect 

bands in organic photovoltaic devices is their potential mitigation and/or enhancement. It is 

predicted that one avenue towards higher efficiency devices is the removal of defect states 

which hinder electronic properties (e.g. deep recombination centers) and the enhancement of 

those states which improve them (e.g. advantageous doping states). Thus, the mitigation of 

electronic defects with be heavily explored here. Two subsections are presented: the first 

summarizes defect mitigation work to date and the second gives an outlook for moving 

forward. 

 

6.2.1 Defect mitigation 

With some understanding as to the presence and characteristics of trap sites in OPV 

devices, I now look at some recent efforts to mitigate. The goal here is to give the reader an 

introduction and general overview of the current works centered on defect mitigation. I begin 

with a discussion on structural ordering.  

 

Much work has gone into studying the crystallization kinetics of organic materials and 

blends thereof. Several techniques, including thermal annealing, solvent annealing and solvent 

additives, have been adopted or developed to promote self-organization in OPV devices.60 

When employing these techniques, most groups cite a higher degree of crystallinity coupled 
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with enhancements in physical parameters (e.g. mobility) as well as photovoltaic performance. 

Though most of these reports do not show any direct measurements of trap states, this 

strongly indicates that structural defects are being reduced. In the case of deeper levels, this 

idea is fully supported by Nalwa et al.’s and Sharma et al.’s growth rate works, as discussed 

above.21,89 Further, when comparing the apparent hole concentrations and processing 

conditions of Dennler et al.’s and Li et al.’s works, some evidence was  presented that the case 

is similar for shallower levels and doping.14,59 This readily points out the obvious – one avenue 

towards trap reduction in OPV devices is promoting more order in the film structure. Though 

this assertion is seemingly unexciting, it represents a vast and important area of research. 

Numerous reports on the self-assembly topic can be found in the literature,147  and their 

continued application and development will be important to trap mitigation in both current and 

future OPV materials.  

 

 

Figure 44: charge carrier concentrations calculated from the data of FIg. 5 [of original article] by 

using Eq. (2) [of original article]. Reprinted from publication [46], Copyright [2011], with 

permission from Elsevier. 
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In addition to crystallinity affects, thermal treatments have also been shown to promote 

the desorption of oxygen, reversing its effects on the ionized acceptor impurity 

concentrations.16,41,43,45,46,77,148 One such example is shown by Seemann et al. in Figure 44.46 

Clearly, the extrinsic impurities induced by synthetic air are readily reduced through thermal 

treatment. Glatthaar et al. found a similar reduction in doping and noted an improved 

rectification for P3HT:PCBM BHJ cells after post-production thermal annealing under forward 

biasing.77 This is further supported by Nam et al.’s aforementioned modeling work.76 The 

authors found that a post-production treatment of their air-processed devices significantly 

reduced oxygen content in the active layer blend. The group proposed this lead to a reduction 

in the oxygen-related impurities, and thereby, an enhancement to the short circuit current.76 

Hintz et al. offer further details as to this desorption through photoelectron experiments.41 

After monitoring binding energies and oxygen content through a series of exposure/annealing 

cycles, the group identified two oxygen species: one reversible and one irreversible. The former 

correlates to noted changes in the material doping and was found to be only a small fraction of 

the total oxygen content.41 This is attributed to physisorbed oxygen which forms a CTC as 

previously discussed. The latter existed in higher numbers and was attributed to oxygen 

contained within photooxidation products.41 They believe this bound species is contained to 

electrically isolated molecular sites, and thereby, the electronic structure of the π-system is not 

largely alterd.41 Seemann et al. noted a similar irreversible aspect in their oxygen degradation 

studies, attributed to photochemical oxidation.46 They believe this irreversible portion may 

induce a slight increase in the mobile hole concentration (Figure 44), and thereby, decrease 
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carrier mobility.46 It is worth noting that although moderate temperatures (>100 ℃) may be 

needed for the rapid removal of oxygen,148 desorption is still expected to occur even at room 

temperature, albeit on a much longer timeframe.43 Of course, this point is supported by the 

data presented in 5.1.4. 

 

Along with structural and oxygen induced defects, impurities from material synthesis 

must also be carefully mitigated. Not only would this relieve the performance degradations 

discussed in chapter II, but also may be advantageous for better device reproducibility. It is 

thought that batch-to-batch variations in the residual synthesis impurities are a significant 

factor affecting the poor batch-to-batch reproducibility of OPV optoelectronic properties,72,73 

making the mitigation of such impurities a promising avenue towards more consistent 

processing. Unfortunately, the detection of trace (e.g. <1% by weight) synthesis impurities, and 

thereby the estimation of material purity, has proven challenging with traditional 

methods.17,72,73,149 Though, Nikiforov et al.’s recent work shows synchrotron X-ray fluorescence 

as a promising measurement for identifying trace residuals and quantifying their 

concentrations.73 Making matters worse, purification – especially noted for the case of 

palladium – is notoriously difficult as decomposition of this transition metal catalyst forms 

nanoparticles which can tightly bind to the backbone of conjugated polymers.72 73,149 

Fortunately, the works of Krebs et al. have begun to tackle this issue.71,149,150 In the initial PPV 

based work, the authors undertook multiple micro-filtrations in order to remove the palladium 

contaminant.71 A two fold increase in film resistance (30 to 60 Ω) was achieved as the shunt 

paths induced by the palladium nanoparticles were removed. With a subsequent boiling of the 
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polymer in a ODCB:triphenylphosphine mixture and a precipitation with methanol, the 

resistance was further increased to 100 Ω – though, still short of the 150 Ω found for the more 

palladium free case.71 This work was then built upon by treating palladium contaminated PPV 

(as well as two other polymers) with a azothioformamide derivative to dissolve the residual.149 

The authors found an impressive drop in palladium content (17,860 to <0.10 ppm) coupled with 

a 300x improvement of film resistance.149 A year later, the group then pushed this idea further 

to demonstrate the ability of azothioformamide derivatives to remove other transition metals 

(i.e. palladium, platinum, copper and nickel) from contaminated organic products.150 More 

information on synthesis, purification and the associated challenges can be found throughout 

the literature.151,152 

 

Wang et al. have tackled defect mitigation from a different point of view.22 Taking cues 

from trap-rich amorphous silicon, which is typically hydrogenated to reduce the concentration 

of defects, Wang treats P3HT with a cation donor, dimethyl sulfate.22 The polymer solution was 

reacted with the donor in hopes that cations would be donated to the polymer backbone and 

annihilate negatively charged defects. As a byproduct, the authors asserted an unbound sulfate 

counterion would be formed, though, it is expected that this ‘defect’ would have less influence 

on electrical properties.22 As such, one would expect improvements in the abovementioned 

deficiencies created by charged defects (charge mobility, exciton diffusion length, etc.). The 

authors showed just that through time-of-flight (mobility) and fluorescence (exciton diffusion 

length) measurements.22 One might be inclined to argue that the chemical treatment could act 

much the same as a solvent additive – affecting crystallization kinetics and film morphology, 
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which could bring about the same type of improvements.60 However, optical absorption and x-

ray diffraction measurements revealed no substantial changes to structure and morphology.22 

Though photovoltaic improvement was meager, photostability was dramatically improved with 

this treatment.  

 

This work was extended by Liang et al. in 2009.23 Here, the authors furthered the study 

on dimethyl sulfate and expanded to include a second regent, lithium aluminum hydride (LAH). 

To be thorough, the study also mentioned treatments with sodium borohydride, sodium 

methoxide and methyl iodide, as well as treatments on PPV, which all gave consistent results.23 

Similar to the previous work, mobility and exciton diffusion length enhancements were noted, 

with LAH producing the largest increases – 17 fold for mobility and two fold for exciton 

diffusion.23 Photostability was also again improved. Interestingly, the zero-field dark 

conductivity increased by a factor of five for dimethyl sulfate, but increased only slightly in the 

case of LAH treatement. Thereby, the mobile hole density doubled for dimethyl sulfate 

treatments, but decreased by a factor of 13 for LAH. The estimated total defect density 

dropped by an order of magnitude in the case of dimethyl sulfate (1x1019 cm-3 to 1x1018 cm-3) 

and by nearly three orders of magnitude for LAH (to 3x1016 cm-3),23 directly highlighting the 

effectiveness of the mitigation technique. 
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Figure 45: change in work function and HOMO peak position with respect to the Fermi-level 

upon doping. Deduced from the UPS spectra given in Fig. S2 [of the original article] in the SM 

[31; of the original article]. Because of the broadening of the HOMO feature at high doping, the 

HOMO position is given by the peak value. The corresponding values for the intrinsic C60 film 

are given by the top and bottom dashed horizontal line, respectively. Reprinted with permission 

from [153]. Copyright [2012] by the American Physical Society. 

  

A similar concept has also been applied to mitigate electron traps in PPV and, more 

recently, C60.153,154 In the latter, the ruthenium(pentamethylcyclopentadienyl)(1,3,5-

trimethylbenze) dimer [RuCp*(mes)]2 was added to the trap-rich fullerene via co-

evaporation.153 Thereby, an extra, molecular n-type doping was introduced into the system, 

traps were filled and passivation was achieved. Direct evidence of this is presented in Figure 45, 

where the peak HOMO position and work function are plotted versus the doping molar ratio 

(MR).153 Clearly, a trend in the energetic positions is seen with increasing dimer doping. The 

authors assert such a trend is consistent with the Fermi-level moving through a distribution of 
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trap states towards the LUMO manifold.153 Around a MR of ca. 6.0E-3, the trend merges with 

the expected trap-free slope, giving some quantification as to the minimum doping density 

needed for controlled passivation. Through this process, both conductivity and mobility were 

vastly improved – indicating potential improvements for OPV performance. Similar data has 

been shown for other dopant materials in C60 systems.155,156 Further, when recalling the work of 

Garcia-Belmonte et al. (Figure 13) it is remembered that a decrease of electronic states in the 

acceptor material alleviates Fermi-level pinning and enhances the achievable Voc.
34 This 

enhancement should also remain true for trap passivation as detailed here. In fact, such a case 

with donor materials was hinted at by Boix et al., who incidentally found that inverted cells had 

four times the p-type doping and an increased Voc when compared to a regular structure.157 As 

a result of the excess holes, EFp was expected to shift towards the HOMO, thereby increasing 

the achievable open-circuit voltage.  

 

6.2.2 Outlook  

Having been submerged in this work in this work for several years, I can give some 

guidance as to how to continue for the betterment of OPV devices. Of course, it will be of 

upmost importance to extend the methods and works discussed above to probe and better 

understand the complete trap profiles of the new, most promising OPV systems. Trap-related 

conclusions made for one organic material set may not be directly applicable to the next – 

especially considering the potential for vast differences in the synthesis impurity concentration, 

inherent structural disorder, sensitivity to oxygen/moisture, etc. – truly highlighting that trap 

effects cannot be overlooked. It is plain to see that the characteristic parameters of the defect 
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distribution(s) as well as their origin(s) must be understood such that these future, high 

efficiency materials can be further optimized through a reduction of these electronic states. As 

a general approach, I align with and build upon the idea of Gregg.26 OPV materials should first 

be pushed towards a more ideal, intrinsic state through structural ordering, the removal of 

oxygen states, material purification, etc. Subsequently, remaining traps might then be further 

reduced through chemical passivation and the electronic properties rebuilt through a 

controlled, extrinsic doping. Though it may be impossible to completely rid these systems of 

electronic traps, their reduction by even a couple orders of magnitude will likely prove fruitful.   

 

To accomplish this goal, measurement as well as mitigation techniques must be continually 

developed. For example, though defects are widely studied using various techniques, no groups 

are currently building complete trap profiles using a combination of the methods discussed 

above. For instance, thermally stimulated current and sub-gap absorption measurements can 

be used to elucidate the shallower states, which can then be coupled with detailed capacitance 

measurements to probe the deeper states. The completed trap profile can be used in current 

and photovoltaic modeling to confirm and show the defect profiles’ affect on electronic 

properties.  This would give an all inclusive defect picture on the single OPV device (instead of 

piecing together several works to build the profile) which can then be systematically altered to 

determine the effects of mitigation techniques. Thereby, comprehensive reports highlighting a 

change in trap concentrations at specific energies coupled with a change in photovoltaic 

parameters would greatly contribute to the science of OPVs. The combination of mitigation 

techniques (e.g. thermal treatments with chemical passivation) as well as the application of a 
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mitigating electrical field and the development of different growth/crystallization methods are 

interesting avenues to consider.  
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7 RESEARCH PATH AND PUBLICATIONS 

 

7.1 Research path 

 

 

Figure 46: block diagram summarizing the progression of the author’s OPV based projects and 

academic path.  
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6. Mahadevapuram, R. C., Carr, J. A., Chen, Y., Bose, S., Nalwa, K. S., Petrich, J. W., Chaudhary, 
S., 2013. Low-boiling-point solvent additives can also enable morphological control in polymer 
solar cells. Synthetic Metals. 185, 115-119. 
 
5. Meyer, M. W., Larson, K. L., Mahadevapuram, R. C., Lesoine, M. D., Carr, J. A., Chaudhary, 
S., Smith, E. A., 2013. Scanning angle-Raman spectroscopy of poly (3-hexylthiophene)-based 
films on indium tin oxide, gold and sapphire surfaces. Applied Materials & Interfaces. 5(17), 
8686 
 
4. Carr, J.A and Chaudhary, S., 2012. On accurate capacitance characterization of organic 
photovoltaic cells. Applied Physics Letters. 100, 213902 
 
3. Carr, J.A, Nalwa, K.S., Mahadevapuram, R., Chen, Y., and Chaudhary, S., 2012. Plastic-
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